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 A B S T R A C T 

The design of machine elements made by viscoelastic matrix can be 
improved by numerical analysis. The solution of the viscoelastic contact 
problem with prescribed geometry is difficult to obtain because (1) both 
contact area and pressure distribution are a priori unknown, and (2) the 
contact parameters keep changing with time, together with the 
compliance of the viscoelastic material. These difficulties are overcome in 
this paper by conducting numerical analysis based on both spatial and 
temporal model discretization. The viscoelastic contact process simulation 
is achieved by computing a series of subsequent contact states, the current 
state depending on the entire contact history. In this manner, the memory 
effect of the viscoelastic material is accounted for. The numerical 
predictions agree well with the classic solution of the spherical contact 
undergoing step loading. The history of pressure distribution and 
modification of contact area in the finite length line contact between a 
rigid profiled roller and a polymethyl methacrylate viscoelastic half-space 
are obtained. The case when the normal force is applied eccentrically in 
the longitudinal direction, leading to a tilting moment, is also considered. 
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1. INTRODUCTION 
 
The reliability of mechanical contacts involving 
machine elements made by viscoelastic matrix 
can be extended by numerical analysis. The 
latter can overcome the limitations existing in 
most analytical solutions, regarding the 
constitutive law of the contacting material or the 
contact geometry, which is usually restricted to 
axisymmetric cases. The finite length line 
contact has important applications in the 

bearing technology, and the stress analysis of 
cylindrical rolling elements is of major 
importance, considering that the raceway life 
was proven [1] to decrease with at least the 
ninth power of contact stress. Moreover, it is 
well known [1-3] that small changes in the 
profile of the rolling element can significantly 
influence the contact stress. At the moment of 
the analysis, the relationship between the roller 
profile and the surface stress cannot be assessed 
analytically even in the simplest case of linear 
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and isotropic elastic bodies. The classic solutions 
of viscoelastic contact analysis [4-8], obtained 
based on the correspondence principle between 
the elastic and the viscoelastic problems of 
stress analysis, are also restricted to 
axisymmetric contact geometry and therefore 
cannot be applied in the study of the finite length 
line contact. Moreover, the mathematical 
complexity of these partially analytical classic 
solutions challenges their wide range 
application. It has been shown [9,10] that a 
viscoelastic problem has an associated elastic 
problem, to which the former reduces after 
removal of time dependency by application of 
the Laplace transform. The classic concept of 
associated elastic problem involves removal of 
time dimension via Laplace transform. In this 
manner, the viscoelastic problem is reduced to a 
formally identical elastic problem, whose 
solution is easier to obtain. If the boundary 
conditions are time-independent, a solution in 
the frequency domain is identical in form to the 
corresponding elastic solution. However, 
handling the transient boundary conditions 
encountered in most contact scenarios may be 
difficult, if not impossible, leading to solutions of 
limited viability.  
 
The indentation of a viscoelastic half-space by a 
rigid indenter features time-dependent 
boundary conditions. The first tentative solution 
was obtained [4] by replacing the elastic 
constant in the solution of the associated elastic 
problem with the appropriate integral or 
differential viscoelastic operator. Applied to 
spherical indentation, the latter technique lead 
to solutions that hold true as long as the contact 
radius increases monotonically with time. A 
more versatile solution was later obtained by 
Ting [7,8], allowing for any number of loadings 
and unloadings, on consideration of up to six 
possible cases based on the loading history. The 
latter solution cannot be considered explicit, as 
it involves solution of transcendental equations. 
 
An alternative approach, more suited to the 
numerical treatment of the viscoelastic contact 
problem, consists in constructing a sequence of 
elastic contact problems with boundary 
conditions that are matched exactly to those of 
the viscoelastic contact problem at a series of 
specified times. This approach is based on the 
fact that, provided the compatibility and internal 
equilibrium equations are satisfied 

instantaneously, any elastic solution to a 
problem becomes an instantaneous viscoelastic 
solution. Recent research efforts [11-13] in the 
field of numerical analysis of bodies with 
arbitrary geometry and complex rheological 
behavior may provide an important starting 
point for the understanding of the viscoelastic 
contact involving complex contact geometries. 
The numerical approach is based on the fact 
that, unlike its counterpart [4] expressing the 
contact radius, the displacement equation 
obtained by replacing the elastic constant in the 
solution of the associated elastic problem with 
the integral or differential viscoelastic operator, 
does not require additional manipulations and 
can be used in conjunction with any history of 
boundary conditions. 
 
In this paper, the finite length line contact of 
linear viscoelastic materials is simulated 
numerically using a technique originally 
developed for the elastic contact of rough bodies 
[14], combined with a method for viscoelastic 
displacement computation [15]. The resulting 
contact model can predict the pressure 
distribution, the end effect and the force 
eccentricity outcome in the finite length line 
contact of linear viscoelastic materials with 
arbitrary loading history and complex 
rheological behavior. 
 
 
2. CONTACT MODEL 
 
The contact model employed in this paper is an 
extended version of the framework adopted in 
[14]. The increase in generality stems from 
consideration of a tilting moment susceptible to 
arise in conforming or line contacts, in which the 
normal force is applied eccentrically. In such 
cases, the resultant of the induced pressure is 
not aligned with the contact normal axis. The 
contact problem is described in a Cartezian 
coordinate system, with the 1x  and 2x  axes 

laying in the common plane of contact, i.e. the 
plane that separates best the limiting surfaces of 
the contacting bodies. The mathematical model 
consists in three type of equations: (1) the 
equation of the surface of deformation between 
the two bodies, (2) the boundary conditions, and 
(3) the static equilibrium. The latter equation 
comprises both normal force and tilting moment 
equilibrium equations, meaning the force 
eccentricity effect can be properly simulated. 
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However, as the contact is assumed frictionless, 
no shear stresses can be supported by the 
contact interface, and consequently no 
tangential force or spin moment is considered in 
the equilibrium equations.  
 
The equation of the clearance between the 
contacting bodies, measured along the normal 
direction 3x , stems from comparison of the 

contact geometry before and after the elastic 
deformation required to accommodate the 
transmitted load. The so-called condition of 
deformation can be expressed as: 

 1 2 1 2 3 1 2 1( , ) ( , ) ( , ) ,h x x hi x x u x x x      (1) 

where h  denotes the gap between the deformed 

bodies, hi  the initial gap (in unloaded state), 3u  

the composite (i.e., relative) displacement along 
the 3x -axis,   the rigid-body approach, and   

the tilting angle due to the normal force 
eccentricity in surface contacts. It should be noted 
that the latter parameter, as well as the normal 
approach  , are rigid-body movements that are 
measured between points and directions in the 
contacting bodies distant from the contact region, 
which is subjected to deformation.  
 
Without losing generality, the force eccentricity 
is allowed along the 1x -axis (matching the line 

contact longitudinal direction), leading to a 
tilting moment about the 2x -axis. This 

simplifying assumption is well suited to finite-
length line contacts. Any force eccentricity along 
the transverse direction would cause rolling, 
which is beyond the point of this study. 
 
The boundary conditions and constraints are the 
mathematical expression of other two 
assumptions: (1) non-negativity of pressure, and 
(2) impenetrability of the bodies. The first 
assumption leads to neglect of contact adhesion, 
and can be considered conservative in the case 
of adhesive contacting material. However, this 
assumption is required to obtain the pressure 
distribution by the classic minimization process, 
seeking the minimum of a quadratic form, i.e. the 
complementary energy, subjected to constraints, 
i.e. the boundary conditions, as described in 
[16]. It should be noted that this assumption is 
common in the literature of the viscoelastic 
contact. The classic viscoelastic solution [4-8] is 
obtained by considering a surface displacement 
compatible with the indenter profile within the 

contact area. Such an assumption can not 
guarantee that contact tractions are everywhere 
compressive. Consequently, no step back is 
made in the model proposed in this paper, and 
the influence of adhesion in viscoelastic contacts 
is left for further research efforts. 
 
The second assumption involves the non-
negativity of the clearance between the 
contacting surfaces, as the solid bodies are 
assumed impenetrable in the frame of Linear 
Theory of Elasticity. Considering that pressure is 
nil outside the contact area, whereas the 
clearance is nil on the contact area, the boundary 
conditions can thus be expressed as: 

 1 2 1 2( , ) 0 , ( , ) 0p x x h x x  ; (2) 

 1 2 1 2( , ) ( , ) 0p x x h x x  . (3) 

The static equilibrium provides additional 
equations relating the unknown pressure 
distribution to the normal force W  and its 

eccentricity e  in the longitudinal direction 1x :  

 1 2 1 2( , )W p x x dx dx

 



   ; (4) 

 1 2 1 1 2( , )W e p x x x dx dx

 



    . (5) 

The aforementioned contact model can be 
employed in the numerical simulation of elastic 
contact scenarios involving arbitrary geometry. 
 
The difficulty in solving the contact model stems 
from the fact that neither the contact area, nor 
the pressure distribution are known in advance, 
and moreover, keep changing during the contact 
process together with the load level and the 
compliance of the viscoelastic material. 
Therefore, a trial-and-error iterative approach is 
adopted, which require the numerical treatment 
of the contact model (1) - (5). 
 
 
3. MODEL DISCRETIZATION 
 

Provided the normal displacement 3u  is 

accurately computed, the aforementioned contact 
model can also assist the numerical resolution of 
contact scenarios involving dissipative processes, 
e.g. the elastic-plastic contact, in which the 
development of the plastic region depends on the 
entire loading history [17], or the frictional 
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contact, in which friction as a dissipative process 
requires the reproduction of the loading history 
[18]. In these cases, the time parameter needs not 
be considered explicitly, as long as the contact 
history is properly replicated by load 
incrementing, assuring reproduction of the 
contact process path. The viscoelastic material 
exhibits the so-called memory effect, meaning the 
current state also depends upon all previous 
loading states, but, moreover, its elastic 
properties (the creep compliance or the 
relaxation modulus) depend explicitly on time. To 
overcome these dependencies, the proposed 
numerical solution for the viscoelastic contact 
model involves a spatial discretization of the 
contact surface, as well as a temporal 
discretization of the loading window.  
 
The spatial discretization employs a rectangular 
uniform mesh laying in the common plane of 
contact, on which all problem parameters are 
assumed piecewise-constant, based on the 
discrete values computed in the mesh nodes. In 
this manner, the contact area is approximated by 
the reunion of a set of non-intersecting patches, 
each one supporting a uniform pressure whose 
magnitude is computed based on its nodal value. 
Mesh nodes notation can make use of discrete 
integers indexing the row and column grids 
intersecting in the corresponding patch. In the 
discrete model, obtaining the contact problem 
solution reduces to finding the magnitude of 
pressure in each node of the considered mesh. 
Problem parameters such as the rigid-body 
movements or the material elastic properties are 
independent of spatial localization. 
 
The temporal discretization assumes that the 
loading window 0[0, ]t  (where at 0t   the 

viscoelastic body was undisturbed, and 0t  is 

prescribed but otherwise arbitrary) is divided 
into small time steps. Time-dependent problem 
parameters, such as the discrete series of 
displacements and pressures, or the elastic 
properties of the viscoelastic material, are 
assumed piecewise-constant in the time 
dimension. On the other hand, mesh parameters 
such as the nodes coordinates and the mesh 
element sizes 1  and 2  remain unchanged. 

The notation of problem parameters can then 
make use of the discrete indexes, i.e. ( , , )p i j k  is 

the uniform pressure predicted for the patch 
( , )i j  of the surface spatial grid, after k  time 

steps. The main advantage of this discretization 
process is the substitution of integration of 
arbitrary functions over arbitrary spatial or 
temporal domains, with summation. The latter 
can be performed for prescribed input, and thus 
favors an iterative search of the contact problem 
solution. The numerical approach thus 
circumvents the continuous integral over space 
and time, arising [15] in the computation of the 
viscoelastic displacement 3u . This further allows 

for an iterative solution of the contact model (1) 
- (5), as outlined in the following section.  
 
 
4. ALGORITHM DESCRIPTION 
 
As shown in [19], computational contact 
mechanics can incorporate the theory of 
viscoelastic behavior provided a directly 
additive (i.e., linear) viscoelastic response is 
assumed. Linearity in the stress-strain 
relationship of the viscoelastic material can be 
achieved in the framework of infinitesimal 
strains. While isotropic and linear elastic 
behavior is completely described by two 
material constants, the linear viscoelastic stress-
strain relationship of incompressible materials 
employs two interchangeable functions of time, 
namely the relaxation modulus ( )t  and the 

creep compliance ( )t . The creep compliance 

function describes the viscoelastic strain 
response to a unit step change in stress, and the 
relaxation modulus, conversely, the stress 
response to a unit step change in strain. 
Assumption of incompressibility, which reduces 
the complexity of the constitutive law, can be 
considered realistic for polymers, whose 
Poisson’s ratio usually exceeds 0.4. With these 
assumptions, a linear relation between the 
tensors of deviatoric stress s  and of deviatoric 

strain e  is established by means of the shear 

modulus G : 

 2s Ge , (6) 

and the linear viscoelastic strain response to 
arbitrary stress in the [0, ]t  window of 

observation, can be expressed, according to the 
Boltzmann hereditary integral, by the Volterra 
integral equation: 

 
0

( )
( ) ( )

t
s t

e t t t dt
t


   

 , (7) 
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In a purely elastic contact, the stress-
deformation relation is based on the Green 
function 1 2( , )B x x  for the elastic half-space 

derived by Boussinesq, expressing the surface 
normal displacement induced at a point 1 2( , )x x  

by a concentrated normal force acting in the 
origin of the coordinate system. By employing 
the superposition principle within the linear 
theory of elasticity, the normal surface 
displacement induced by arbitrary pressure 

1 2( , )p x x  results as: 

e
3 1 2 1 1 2 2 1 2 1 2( , ) ( , ) ( , )u x x B x x x x p x x dx dx

 



         , 

  (8) 

The viscoelastic displacement vs
3u  computation 

is achieved by substituting the elastic constant 
1 (2 )G  entering the elastic displacement 

equation (8) with the viscoelastic creep 
compliance function ( )t , as suggested in [4], 

and by applying the superposition implied by 
Volterra integral (7). The viscoelastic stress-
deformation relation results as:  

vs e
3 1 2 3 1 2

0

( , , ) 2 ( ) ( , )

t

u x x t G t t u x x dt
t


   

 . (9) 

The discrete counterpart of continuous equation 
(8) involves the elastic influence coefficient 

e ( , )K i j , derived as suggested in [14]: 

 

1 2
e
3 e

1 1

1 2

( , ) ( , ) ( , ),  

1 , 1 ,

N N

k

u i j K i k j p k

i N j N

 

  

   

  (10) 

where 1N  and 2N  are the row and column 

number of spatial grids. By defining a 
viscoelastic influence coefficient: 

 vs e( , , ) 2 ( ) ( , ), 1 tK i j k G k K i j k N    , (11) 

with tN  is the number of temporal steps, the 

viscoelastic displacement induced by a 
prescribed, but otherwise arbitrary loading 
history, at a prescribed time step k  from the 
observation window, results as [15]: 

 

1 2
vs
3 vs

1 1 1

1 2

( , , ) ( , , )  

( , , ) ( , , 1) ,

1 , 1 , 1 ,

N Nk

n m

t

u i j k K i j m k n

p m n p m n

i N j N k N

  

    

 

  



(12) 

The latter equation is the discrete counterpart of 
equation (9), with the viscoelastic influence 
coefficient vs ( , , )K i j m k n    expressing the 

displacement induced after k  time steps in the 
spatial cell ( , )i j , by a uniform pressure of 

magnitude 1 21 ( )  Pa, that acted in the cell 

( , )m  in the n th time step of the observation 

window. Equation (12) shows that viscoelastic 
displacement computation requires the 
knowledge of all previous states.  
 
In the discrete model, the history of pressure 
distribution in the viscoelastic contact is thus 
replicated by successively computing a pressure 
map for each new time increment, thus 
overcoming the viscoelastic memory effect. In 
other words, the contact model is solved 
successively at every time step, assuring the 
simulation of the loading history. The employed 
contact solver is based on the Conjugate 
Gradient-type scheme originally advanced by 
Polonsky and Keer [14] for the elastic contact of 
rough surfaces. In the beginning of the 
observation window, no loading history is 
assumed, so the initial contact state is calculated 
as a purely elastic process, i.e. the displacement 
is generated by the initial pressure only. In the 
subsequent time increments, the entire pressure 
history is used to assess the contribution of the 
loading history to the current displacement field, 
as suggested by equation (12). This contribution 
is superimposed in the equation of the surface of 
deformation (1). A similar technique was 
employed [17] for the contact of elastic-plastic 
bodies, by superimposing the residual 
displacement to the initial contact geometry, 
thus obtaining a modified hi . In this manner, the 
instantaneous (i.e., for a fixed, but arbitrary t ) 
viscoelastic contact model is reduced to a purely 
elastic process with a modified initial contact 
geometry. For the latter, a robust numerical 
solution is readily available [14]. 
 
By solving a series of subsequent instantaneous 
contact states, corresponding to the discrete 
series of time moments considered in the 
temporal discretization, the simulation of the 
viscoelastic contact process is obtained. The 
flow-chart of the proposed algorithm is detailed 
in Fig. 1, in which the indexes for spatial 
localization are omitted for brevity, and the 
number of the time step is indicated as an 
upper index. 
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Get pressure history:
p(0),�, p(k)

Impose a new 
time increment:

k   k + 1 

Compute contribution of pressure 
history to displacement:

u3 hist = u3 hist ( p(0),�, p(k-1) )

 End of simulation
 time interval?

Solve the current contact 
state.  Obtain the current 

pressure p(k)

START

STOP
No

Yes

Superimpose the displacement to 
initial contact geometry:

hi(k)   hi + u3 hist 

 
Fig. 1. Algorithm flowchart for the simulation of the loading history. 

 

Adopt the initial 
guess pressure 

Compute the 
displacement

Compute the 
rigid-body 

translation and 
rotation

Compute the 
CGM descent 

direction

Compute the 
CGM descent 

step 

 Adjust pressure 
to minimize the 

CGM residual

Reset CGM 
directions

Adjust pressure 
to balance the 
applied load

STOP 

Pressure 
converges?

No

START

Acquire the input: load, 
gap, contact compliance

Negative 
pressure?

Yes

No

Negative gap?

Reset CGM 
directions 

Yes

No

 
Fig. 2. Algorithm flowchart for solving the instantaneous contact state. 

 
The instantaneous contact area and pressure 
distribution are determined with a trial-and-
error approach, as suggested in [14]. A guess 
contact region is assumed, and the pressure 
distribution is then iterated based on this 
assumption. The iteration implies the repeated 
resolution of the linear system resulting from 
equation (1), having the nodal pressures as 
unknowns. The Conjugate Gradient Method 
(CGM) is employed, due to its superlinear rate of 
convergence. The convergence of the CGM can is 
guaranteed as the influence coefficients matrix, 
matching the system matrix, is symmetric and 
positive definite. Additional constraints 
resulting from equations (4) and (5) are applied 
at each iteration of the CGM, whereas the 
violation of the boundary conditions (2) and (3) 
results in a reinitialization of the residual 
minimization path in the CGM by a reset of the 
conjugate directions. When all constraints in the 
contact model (1) - (5) are verified, a contact 
problem solution is achieved. This solution is 
unique based on the theorem of uniqueness of 
solution of the elastostatic problem. Otherwise, 
the process is restarted with a different initial 

guess. An outline of the employed algorithm to 
obtain the instantaneous contact state is 
depicted in Fig. 2. A detailed description of the 
algorithm for solving the frictionless elastic 
contact problem is beyond the point of this 
paper, but an interested reader is redirected to 
the algorithm [20] for the slip-stick elastic 
contact, which features a general solution for the 
elastic contact involving all types of rigid-body 
translations and rotations. 
 
The algorithmic computational complexity is 
dictated by the number of nodes in the spatial 
mesh, i.e. 1 2N N , as well as by the number of 

temporal steps tN . The most computationally 

intensive operations are the convolution 
products related to the superposition of 
pressure effects in the two spatial dimensions. 
The computational impact is dramatic because 
these convolutions must be computed two 
times per iteration in the CGM. The correlation 
between the density in the spatial mesh and 
the precision goals of the CGM was discussed 
in [14].  
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The discrete convolution calculations can be 
accelerated by employing the Discrete 
Convolution fast Fourier transform (DCFFT) 
[21,22], leading to a decrease in the 

computational complexity from 2 2
1 2( )O N N  to 

1 2 1 2( log( ))O N N N N  per time step. The DCFFT 

exploits a remarkable property of the 
convolution product, namely that it can be 
calculated as an element-wise product in the 
Fourier transform domain. The practice of 
numerical simulation applied to finite length line 
contacts suggests adoption of a spatial mesh 
with a variable step size, with higher density of 
nodes towards the roller end, where pressure 
risers are expected due to the singularity in the 
punch ordinate. Such meshing techniques are 
not compatible, however, with the DCFFT, which 
requires the mesh to be uniform. It should be 
remembered that the influence coefficients 
depend on the distance between the observation 
and the excitation point, and a variable-step size 
would increase considerably the overall number 
of possible distances between the mesh nodes.  
 
Considering that equation (12) is a 2D discrete 
convolution product in the space dimension but 
not in the time dimension, the order of 
computations for the entire simulation window 

results as 2
1 2 1 2( log( ))tO N N N N N . The numerical 

simulations performed with the newly proposed 
computer program suggests that mesh 
convergence can be achieved with a relatively 
small number of time steps. Practically, a contact 
simulation performed on a spatial mesh with 

182  nodes and with 120 time steps was finished 
on a 4-core 3.2 GHz CPU in less than 15 minutes. 
It should be noted that the computation of the 
3D array of influence coefficients only needs to 
be performed once. 
 
 
5. VISCOELASTIC FINITE LENGTH LINE 

CONTACT 
 
In a finite length line contact, the theoretical 
models predict an infinite pressure at the sharp 
edge of the shorter contacting body. However, in 
practice, plastic yielding or inherent errors in 
the manufacturing process limit the contact 
stresses to a finite, yet large, value. Highly 
localized stress concentrations induced by the 
pressure risers pose a major threat to the load 
carrying capacity of the contact, and therefore 

the reduction of these end effects was the 
subject of numerous research efforts [1-3].  
 
Comparison of various profiling techniques 
requires numerical simulation [2,3]. However, 
there exist a major disadvantage in treating the 
problem numerically: uniform grids are not 
performing optimally in finite length line contact 
analysis. Both pressure and width of contact 
area are weak functions of the longitudinal 
coordinate in the central region, where the Hertz 
theory may apply, but vary significantly toward 
the ends, where the gradient of pressure 
increases abruptly. The peak pressure value is 
very sensitive to discretization. The contact area 
manifests enlargements at the ends, which are 
referred to as a “dog bone” shape [19].  
 
The case of contacting cylinders of the same 
length cannot be solved in the frame of the half-
space approximation, and therefore is beyond 
the scope of this paper. When one contacting 
cylinder is sufficiently shorter, the other body 
can be treated as an elastic half-space. 
Therefore, in this paper, the contact between a 
rigid cylindrical indenter and a viscoelastic half-
space is considered. If the indenter is not 
rounded, a singularity in the contact stress is 
expected. Considering that the numerical 
technique averages pressure over each contact 
patch, such singularities can only be described in 
an approximate manner.  
 

 
Fig. 3. The geometry of the indenter. 

 
In this paper, a rounding radius is introduced, i.e., 
partial crowning [2], to minimize this 
disadvantage. The crowning arc, of radius aR , is 

assumed tangent to the linear portion of the 
roller generatrix, of half-length L , as depicted in 
Fig. 3. The roller radius in the unprofiled region is 
denoted by R . The indenter geometry results as: 
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1 2

2 2
2 1

2
2 2 2

1 1 2

1

                                ( , )

,

( sgn( )) ,

                                                             

a a

hi x x

R R x x L

R R R R x L x x

x L



   

           
 


 

  (13) 

The load level is chosen so that the contact area 
half-length does not approach the roller’s end, 
i.e. there exist sufficient material around the 
contact to provide support, as shown in Fig. 4. 
 

 
Fig. 4. Contact geometry after deformation. 

 

 
Fig. 5. Relaxation modulus function of PMMA. 

 
The constitutive law of the viscoelastic material 
employed in this paper is that of the polymethyl 
methacrylate (PMMA), a thermoplastic polymer 
whose relaxation modulus under uniaxial 
compression was obtained experimentally by 
Kumar and Narasimhan [23]. Figure 5 depicts 
the measured data in a window of observation of 
1000 s. The relation between the creep 
compliance and the relaxation modulus function 
in the Laplace transform domain, i.e.: 

 2( ) ( ) 1s s s   , (14) 

can be further used to derive the creep 
compliance of PMMA by inverse Laplace 
transform, yielding: 

 
4 5

5 3

( ) 7 10 6.17 10 exp( 0.1 )

8.38 10 exp( 7.47 10 ), [1/ MPa].

t t

t

 

 

      

  
 (15) 

It should be noted that in the time domain the 
creep compliance and relaxation modulus 
functions are not reciprocal like in the purely 
elastic case, i.e. ( ) ( ) 1t t   . 

 
 

6. RESULTS AND DISCUSSIONS 

 
The computer program was first benchmarked 
against the implicit solutions derived in the 
classical literature [4-8] of the viscoelastic contact 
for the step loading spherical indentation of a 
viscoelastic half-space described by the Maxwell or 
Zener rheological model. The Hertz (i.e., at 0t  ) 

contact parameters, namely the contact radius Ha  

and the central pressure Hp , are used as 

normalizers in Figs. 6 and 7, depicting the radial 
pressure distributions achieved at various time 
moments from the loading history. A good 
agreement with the classic solution is found. The 
latter solution, detailed in Appendix, requires 
further numerical treatment, and is valid for 
monotonically increasing contact radius only. The 
predictions of the proposed computer program are 
depicted using dashed lines, whereas the data 
resulting from the classic framework is displayed 
with continuous lines in Figs. 6 and 7. 
 

 
Fig. 6. A Maxwell half-space spherical indentation. 



S. Spinu, Tribology in Industry Vol. 40, No. 4 (2018) 538-551 

 546 

 
Fig. 7. A Zener half-space spherical indentation. 

 
The finite length line contact of viscoelastic 
materials is studied by pressing a rigid roller 
whose contact geometry is described by 
equation (13), into a viscoelastic PMMA half-
space of the creep compliance given in equation 
(15) and of Poisson’s ratio 0.38   [23]. 
 
A step-loading 0( ) ( )W t W H t  is assumed, where 

( )H t  denotes the Heaviside step function, and 

0 10 kNW  . In this study, the Poisson’s ratio of 

the viscoelastic material is assumed constant 
with time, and consequently the relaxation 
functions in response to volumetric and shear 
deformations are in a fixed ratio [19].  
 
In this manner, the assumption of material 
incompressibility can be discarded [19]. The 
roller dimensions are [2]: 2 19.13 mmL  , 

7500 mmaR  , 5 mmR  . Figures 8-10 

describe the centric loading, and therefore 
only one fourth of the spatial computational 
domain is depicted, due to symmetry; 
whereas, in case of eccentric loading, one half 
is retained. 
 
Iso-contours of centric pressure distribution 
predicted for 240t  s are depicted in Fig. 8, 
whereas Figs. 9 and 10 show the extents of the 
contact area and the longitudinal pressure 
profiles, respectively, at different moments from 
the loading history.  
 

 
Fig. 8. Pressure iso-contours, 240t  s, 0e  . 

 

 

Fig. 9. Contact area extents, 0e  . 

 

 

Fig. 10. Longitudinal pressure profiles, 0e  . 
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As in the case of the spherical contact, the 
contact area grows with time, leading to 
shallower pressure in the regions of the initial 
contact surface. Subsequent contact area 
boundaries in Fig. 9 follow the initial “dog 
bone” shape, well known from the theory of the 
elastic finite length line contact. The 
longitudinal pressure profiles display a 
pressure riser related to the end effect, whose 
intensity diminishes with time, as shown in 
figure 10. The choice of the crowning radius aR  

has a chief influence on this riser. 
 
Considering the stabilization in the PMMA 
compliance suggested in Fig. 5 after 250t  s, the 
contact parameters are not expected to vary 
significantly. It should be noted that these 
findings apply to PMMA only, other constitutive 
laws may lead to different contact behaviours.  
 
The practical applications of the finite length line 
contact may involve an a priori unknown 
misalignment, i.e. an angular displacement of the 
roller axis with respect to the shaft axis, 
measured in the plane defined by the applied 
load vector and the shaft axis. The latter 
situation can be treated by assuming a force 
eccentricity, leading to a non-symmetric 
pressure distribution whose resultant is shifted 
to compensate for the resulting tilting moment. 
The predicted contact parameters are depicted 
in figures 11-13 for 0.5e L  , and in Figs. 14-16 

for 1e L  . 

 

 

Fig. 11. Pressure iso-contours, 240t  s, 0.5e L  . 

 

 

Fig. 12. Contact area extents, 0.5e L  . 

 

 

Fig. 13. Longitudinal pressure profiles, 0.5e L  . 

 

 

Fig. 14. Pressure iso-contours, 240t  s, 1e L  . 
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Fig. 15. Contact area extents, 1e L  . 

 

 

Fig. 16. Longitudinal pressure profiles, 1e L  . 

 
The progress with time of the eccentric contact 
process bear similarities with the centric case. 
An additional inclination in the longitudinal 
pressure profiles can be found, as in Figs. 13 
and 16, accompanied by a widening of the 
contact area in the direction of the force 
eccentricity, as suggested in Figs. 12 and 15. A 
diminishing in the opposite pressure riser is 
predicted with increasing e , as shown in Fig. 
14, as the roller tilting brings less of the 
profiled region into contact.  
 
The variation with time of the contact area, the 
tilting angle and the rigid-body approach, for 
various eccentricities are depicted in Figs. 17, 18 
and 19, respectively. The contact area and the 
normal approach follow a similar trend, dictated 
by the relaxation modulus function of the 

viscoelastic material (Fig. 5). Numerical 
oscillations can be seen in Fig. 17 as jagged 
lines, caused by the assumption of a discrete 
contact area calculated as the sum of areas of 
elementary cells having a small, but non-
vanishing, magnitude. In the numerical 
approach, the contact area can only vary in 
increments equal to the area of the elementary 
patch, multiplied by the number of axes of 
symmetry. These oscillations can be reduced 
by employing finer spatial meshes. The 
performed numerical simulations suggest that 
higher eccentricity lead to smaller contact area 
and rigid-body approach, but to higher tilting 
angle and pressure riser in the eccentricity 
direction. The data depicted in Fig. 18 shows 
that the growing tilting angle has an initial 
rapid variation, then increases monotonically 
at a small rate. 
 

 

Fig. 17. Contact area vs. time, various eccentricities. 

 

 

Fig. 18. Tilting angle vs. time, various eccentricities. 
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Fig. 19. Rigid-body approach vs. time, various 
eccentricities. 

 
Although the contact geometry was chosen 
considering practical applications, the presented 
simulations prove the model ability to treat 
various contact processes involving the finite 
length line contact of linear viscoelastic 
materials. The literature of the finite length 
elastic contact has proven [1-3] that small 
changes in the roller profile may significantly 
disturb the contact stresses, making the contact 
problem ill-conditioned. This is especially true 
for the profiling radius aR , whose choice has a 

chief influence on the resulting pressure riser. A 
smaller radius may result in important gradients 
of pressure, leading to subsurface stress 
concentrations that favor plastic yielding and 
crack nucleation, negatively affecting the service 
life of the contacting element. 
 
 
7. CONCLUSIONS 

 
The simulation of the finite length line contact of 
linear viscoelastic materials is achieved in this 
paper by combining a solver for the frictionless 
elastic normal contact with a numerical method 
for the calculation of the displacement induced in a 
viscoelastic half-space by a prescribed but 
otherwise arbitrary pressure history. Due to the 
robustness of the contact solver, tilting angles 
induced by force eccentricity can also be predicted. 
 
The strong points of the newly proposed 
algorithm consist in:  

1. the ability to incorporate complex models of 
viscoelasticity, including discrete data 

resulting from experimental measurements, 
without the need for further 
interpolation/regression; 

2. the capability to treat arbitrary contact 
geometry, including mapped surfaces 
measured by 3D surface imaging devices 
(optical profilometers, atomic force 
microscopes etc.); 

3. the ability to replicate the contact process 
for prolonged periods of time, due the 
increased computational efficiency of the 
convolution products calculation, and 

4. the capacity to simulate arbitrary loading 
histories (including unloading breaks), 
without the drawbacks of the classic solution 
of the viscoelastic contact, requiring 
numerous conditional statements, as well as 
resolution of transcendental equations. 

 
Comparison with results for the spherical contact 
of viscoelastic materials described by classic 
rheological models provides program validation. 
The numerical simulation technique is employed 
to predict the evolution of contact parameters in 
the finite length line contact of viscoelastic 
materials subjected to centric or eccentric loading. 
The presented simulation results prove the 
method ability to tackle complicated contact 
problems arising in practical engineering 
applications but lacking analytical solution.  
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The classic literature of the viscoelastic contact 
provides implicit relations for the solution of the 
axisymmetric contact involving linear viscoelastic 
materials. These solutions often require further 
numerical treatment, such as numerical 
integration and differentiation. Moreover, when 
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the solution of transcendental equations is also 
needed. Particularization of the general relations 
for the monotonically increasing contact area in 
the point contact of viscoelastic materials whose 
constitutive law is described by basic rheological 
models, subjected to step loading, lead to the 
contact solution presented in Table 1. For both 
Maxwell and Zener units, the contact radius can be 
expressed as:  

 3
0( ) 3 ( ) 8a t RW t  , (16) 

where R  is the radius of the spherical indenter, 
and ( )t  the creep compliance function. The 

latter depends on the characteristic parameters 
of the basic rheological units: G - the elastic 
modulus of the purely elastic springs governed 
by Hooke’s law, and  - the coefficient of 

viscosity of purely viscous dampers, acting as 
Newtonian fluids.  

 
Table 1. The solution of step loading spherical indentation for the Maxwell and Zener rheological models. 

Rheological 
model 

Creep compliance Radial pressure distribution 

Maxwell 
 

 
 

1
( ) 1

2

t
t

G 
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 
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8 1
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Zener 
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