Effect of Laser Energy on the Tribology Properties of MoS$_2$ Flakes

M. Mahdavia, S. Kimiagarb*, F. Abrinaeic

a Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran,
b Nano Research Lab (NRL), Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran,
c Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran.

Keywords:
MoS$_2$
Hydraulic
Lubricant
Laser
Few-layered
Oil

A B S T R A C T

The present study reports the novel synthesis of few-layered MoS$_2$ flakes for hydraulic applications. The few-layered MoS$_2$ flakes were prepared by using hydrothermal method and laser irradiation assistant at different energy levels from 40 to 80 mJ. XRD patterns indicated a hexagonal structure for the samples. The crystallite sizes experienced a decrease from 50 to 15 nm by increasing laser energies. Raman spectra revealed a slight red-shift and blue-shift by increasing laser energies. The Zeta potential values increased by enhancement of laser energy that maximum value achieved for 80 mJ laser energy. The viscosity index of the samples increased when increasing the laser energy, decreasing the viscosity variations with the temperature varies. The laser irradiation can improve the limits of temperature of the fluid containing a few-layered MoS$_2$ flakes making them suitable for industrial applications. The friction coefficient were reduced for the base oil containing few-layered MoS$_2$ flakes additive irradiated under 80 mJ laser energy. The results suggest that laser irradiation can improve the hydraulic properties when including a few-layered MoS$_2$ flakes. Few-layered MoS$_2$ may be a promising candidate for applications as oil additives.

© 2020 Published by Faculty of Engineering

1. INTRODUCTION

The industry has recently witnessed an increase in demand for solid lubricant purposes. Solid lubricating materials can be dispersed in a solid matrix or added to lubricating oil as an additive. Efficient boundary lubrication, reduce in friction, and minimize wear in extreme operating environments are the benefits of using the solid lubricants. It is possible to improve lubricant performance by combining different types of lubricants that leads to control of friction, avoiding wear, and corrosion protection. The soft-metal solid lubricants, graphite, polytetrafluoroethylene (PTFE), molybdenum disulfide (MoS$_2$), and white solids are known as examples of solid lubricants. Each of these materials, in its turn, has advantages and disadvantages for using as lubricants.

Nowadays, nano-lubricants have attracted much attention due to the possibility of controlling the
size distribution and shape. Selection of materials and a synthetic method that not only can provide better lubricant properties but also it has the ability to produce large-scale for industrial applications, has become an important challenge in this field. MoS\textsubscript{2} as a transition metal dichalcogenide has been more known due to its inherent structural characteristics that composed of strong covalently S-Mo-S sheets that held together by weak van der Waals interlayer interactions [1]. The reduction layer is possible by micromechanical exfoliation from bulk crystalline due to weak interlayer interactions [2]. MoS\textsubscript{2} has drawn wide attention due to the applicability as catalytic materials for hydrodesulphurization and gas storage, catalyst for coal liquefaction, solar cells, and new generation of semiconductors and high-rate lithium battery [3-8]. Among solid lubricants, the lamellar materials such as graphene and MoS\textsubscript{2} are especially important due to the formation of individual atomically-thin planes that lead to the easily slip over each other [9, 10]. This is while paying more attention to MoS\textsubscript{2}, realizing its use as a dry lubricant or additive to lubricating oils to reduce friction [11]. Gustavo Tontini et al. investigated the stability and tribological properties of nanostructured flower-like MoS\textsubscript{2} particles dispersed in two different lubricants with 1 Wt.% of MoS\textsubscript{2} nanoflowers and found that a ramified polyolester-based nano-oil showed no decrease in its average friction coefficient, while a naphthenic-based nano-oil presented a remarkable 86 percent reduction [12]. Due to the excellent properties such as adhesion, wide service-temperature range, fretting corrosion protection, reduction of friction with enhance in loads, avoiding stick-slip, High load carrying capacity, MoS\textsubscript{2} is at the center of attention in the field of lubricants [13-15]. According to literature, MoS\textsubscript{2} in few-layered form had better stability and solubility in organic solvents or lubricating oils [16-18]. So far, many methods such as sulfurization of molybdenum salts, chemical vapor deposition and sonochemical, electrochemical deposition, thermal decomposition, solvothermal and hydrothermal methods have been used to synthesize the MoS\textsubscript{2} nanostructures [19]. Among the above-mentioned methods, the hydrothermal method is a useful procedure for synthesis of MoS\textsubscript{2} nanostructures due to the simplicity in the method, convenient in control of size and shape, cost-effectiveness, and high-performance products.

The present study describes a novel method to the large-scale synthesis of few-layered MoS\textsubscript{2} flakes. First, nanocrystalline particles of MoS\textsubscript{2} were synthesized by a hydrothermal method and then they thinned by reduction of layers using the laser beam irradiation. Finally, the obtained few-layered MoS\textsubscript{2} used as an additive to the hydraulic oils and its effects was studied.

2. EXPERIMENTAL METHODS

2.1 SYNTHESIS OF FEW LAYERED MoS\textsubscript{2} FLAKES

All materials using in these experiments were purchased from Merck Company. MoS\textsubscript{2} nanosheets prepared by a solution of 0.1 M ammonium heptamolybdate ((NH\textsubscript{4})\textsubscript{4}Mo\textsubscript{7}O\textsubscript{24}) and 0.2 M thiourea (CH\textsubscript{4}N\textsubscript{2}S) in ethanol that stirred at 60 °C for 30 min to achieve a milky homogeneous solution. Then, the solution filled into a 100 mL container placed into the Teflon lined stainless steel autoclave. The reaction carried out at 220 °C for 12 h. After cooling down to room temperature the obtained black powder washed twice with ethanol and dried in a vacuum oven at 80 °C. Few-layered MoS\textsubscript{2} was prepared by a suspension of 0.5 g of MoS\textsubscript{2} nanosheets which dispersed in 20 mL ethanol for 20 min. Three of this suspension separately was exposed under 532 nm Nd:YAG pulsed laser irradiation (5 ns pulse duration and 7 mm beam diameter) with 40, 60, and 80 mJ energy for 15 min. A flow chart of the experimental procedure is shown in Fig. 1.

![Flowchart of the experimental process for the synthesis of few-layered MoS\textsubscript{2}](image-url)
2.2 ADDING THE FEW-LAYERED MOS₂ FLAKES TO OIL

In order to investigate the effect of the few-layered MoS₂ flakes, the nano-sheets with the concentration of 0.02 g/L were dispersed in oil (T-68, DIN-51524 part II HLP). Then it was placed into the ultrasonic bath for 12 h to achieve homogeneous solution. The Oil (0) and Oil (1) referred to the pure oil without any nanomaterial and the MoS₂ nanosheets additive, respectively. Similarly, the Oil (40), Oil (60), and Oil (80) are attributed to few-layered MoS₂ flakes after 15 minutes irradiation under 40, 60, and 80 mJ laser energy, respectively.

2.3 CHARACTERIZATION

The structure of fabricated samples characterized by X-Ray diffraction (XRD) using X'Pert PRO, Philips with Cu-Kα radiation (λ = 0.154 nm). Transmission Electron Microscopy (TEM), Philips XL, conducted to determine the morphology and structure of the samples. Raman spectroscopy (HR-800, JobinYvon) was utilized to specify the structure, quality and the number of MoS₂ layers. The Raman spectra were recorded in a range from 300 to 3000 cm⁻¹ with 0.5 cm⁻¹ spectral resolution. A four-ball tribometer was used to study the friction coefficient and wear scar of the prepared samples. The four-ball test machine was used to estimate the wear preventive characteristics of the lubricant (Fig. 2). Oil Analysis Condition Monitoring was done by Alborztdarbirkan Iranian Company. Kinematic viscosity was determined at 40 and 100 °C using ASTM D2270 method to know about viscosity variations at different temperatures. Pour point, which is a liquid flowing temperature, and flash point that is a possible dilution of oil was measured. Kinematic viscosity specified as the measurement of the resistance of a fluid to flow under gravity conditions.

3. RESULTS AND DISCUSSION

3.1 STRUCTURAL INVESTIGATIONS

Figure 3 shows the crystal structure of the MoS₂ nanosheets and few-layered MoS₂ flakes were studied by powder X-ray diffraction (XRD) as a function of the processing conditions. All the samples exhibited the crystalline nature of MoS₂ materials with some typical peaks at 14.2°, 32.6°, 39.5°, 44.2°, 49.8°, and 58.3°, corresponding to the (002), (100), (103), (006), (105), and (110) planes of hexagonal MoS₂ structure with lattice constants a = b = 0.315 nm, and c = 1.229 nm (JCPDS NO. 37-1492). The (002) peak corresponding to a d-spacing of 0.62 nm demonstrated the stacking of single layers, while peaks with higher angle offer information about the crystallinity of the samples [20]. Decreasing of (002) peak intensity suggested the more reduction in thickness of MoS₂ flakes [21,22]. It is noticed that the (002) diffraction peak of the few-layered MoS₂ flakes after laser irradiation experiences a shift to the lower angles leads to an increase in d-spacing and it indicate the de-stacking of MoS₂ layers. It can be concluded that the average grain size of the MoS₂ nanosheets were gradually decreased with the increase in the energy of laser irradiation. To some extent, the widened diffraction peaks also confirmed the reduction of the initial size of the MoS₂ nanosheets, which was caused by the laser irradiation. Further details obtained from XRD data and estimated crystallite size of the samples using the Williamson- Hall plot [23] are listed in Table 1.

Fig. 2. Schematic of a four-ball test machine.

Fig. 3 XRD patterns of the MoS₂ structures under various laser energies from 40 to 80 mJ.
The calculated strain from the XRD data is also collected in Table 1. The results illustrated that the strain was the occurrence of the MoS$_2$ nanosheets damage during the laser irradiation, while it was broken because of the laser damage it changed its position, proving the existence of the strain [24]. This finding indicates that the in-plane strain can affect the dominant covalent bonding between Mo and S atoms. This would amend the electronic properties of monolayer MoS$_2$ by the induced strain [25].

3.2 MORPHOLOGICAL OBSERVATIONS

TEM images of the MoS$_2$ samples were performed to investigate the structural deviations that occur after various laser irradiation energies (Figs. 4c-4d). In Fig. 4b the large area could be distinguished. By increasing laser irradiation energy, decreasing of the layers are apparent. Fig. 4d shows few-layered MoS$_2$ flakes with folding at the edge, which is known as a commonly occurred phenomenon in two-dimensional materials.

<table>
<thead>
<tr>
<th>Sample</th>
<th>2θ (deg.)</th>
<th>(hkl)</th>
<th>d (Å)</th>
<th>Crystallite size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Irradiation</td>
<td>14.18</td>
<td>(002)</td>
<td>6.246</td>
<td>0.27×10$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>32.56</td>
<td>(100)</td>
<td>2.740</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.53</td>
<td>(103)</td>
<td>2.270</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44.21</td>
<td>(006)</td>
<td>2.049</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.73</td>
<td>(105)</td>
<td>1.834</td>
<td></td>
</tr>
<tr>
<td>40 mJ</td>
<td>14.08</td>
<td>(002)</td>
<td>6.280</td>
<td>1.40×10$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>32.31</td>
<td>(100)</td>
<td>2.771</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.41</td>
<td>(103)</td>
<td>2.287</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44.16</td>
<td>(006)</td>
<td>2.051</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.86</td>
<td>(105)</td>
<td>1.829</td>
<td></td>
</tr>
<tr>
<td>60 mJ</td>
<td>14.06</td>
<td>(002)</td>
<td>6.299</td>
<td>1.75×10$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>32.35</td>
<td>(100)</td>
<td>2.768</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.44</td>
<td>(103)</td>
<td>2.285</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44.13</td>
<td>(006)</td>
<td>2.052</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.83</td>
<td>(105)</td>
<td>1.820</td>
<td></td>
</tr>
<tr>
<td>80 mJ</td>
<td>14.03</td>
<td>(002)</td>
<td>6.312</td>
<td>1.96×10$^{-2}$</td>
</tr>
<tr>
<td></td>
<td>32.19</td>
<td>(100)</td>
<td>2.781</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39.39</td>
<td>(103)</td>
<td>2.287</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44.11</td>
<td>(006)</td>
<td>2.053</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.81</td>
<td>(105)</td>
<td>1.831</td>
<td></td>
</tr>
</tbody>
</table>

The number of layers could be determined using this morphological deviation [26]. A single dark line at the folded edge could be related to a monolayer [27]. The TEM results indicate that the MoS$_2$ prepared in this study is a monolayer/few layered.

3.3 CHEMICAL-BOND STUDY

The crystalline structure of MoS$_2$ was further investigated by Raman spectroscopy. Figure 5 shows the Raman spectra of the multilayer and few-layered MoS$_2$ flakes excited by 488 nm in the air environment. There are two types of single-layer MoS$_2$, 2H- MoS$_2$ and 1T-MoS$_2$, which 1T-MoS$_2$ is metastable. 2H corresponds to 2 layers per H (hexagonal) unit cell, and 1T is one layer per (trigonal) unit cell, and also a mixture of several poly types in the one sample is possible. In the bulk MoS$_2$ sample, characteristic E_{2g1} and A_{1g} observe at 384 and 410 cm$^{-1}$, respectively. These vibrations related to the in-plane opposite of S-Mo and out-of-plane vibrations in sulphur atoms correspondingly [28].
the layers leading to the higher force constants [31, 35]. The red-shift of A_{1g} peak and blue-shift of E_{2g}^{1} peak signifying negligible interlayer Van der Waals forces whereas stacking induced the structure changes in multilayer MoS$_2$ [35]. Furthermore, the intensity of the peaks for MoS$_2$ after laser irradiation obtained as relatively high and broader compared to the other sample. This shows the thickness reduction in the of MoS$_2$ flakes [36]. The observed position and expansion of the peaks would be related to surface reconstruction. It is obvious that the A_{1g} mode was found to soften (decreasing of the frequency, which is accompanied by position changes of the atoms in a unit cell) probably because of the surface reconstruction [37]. This evidence confirms that the interlayer bonding and lattice dynamics would be affected by the weak interlayer interaction through surface reconstruction and vibrational softening [38]. The same perceptive may apply to few-layer MoS$_2$ samples. This makes possible using Raman frequencies as an indicator of the layer thickness. These results confirm exfoliation of the MoS$_2$ to few-layer form.

Table 2. Calculated $\Delta \omega$ and FWHM form Fig. 5.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Before irradiation</th>
<th>40 mJ</th>
<th>60 mJ</th>
<th>80 mJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \omega) (cm$^{-1}$)</td>
<td>48</td>
<td>46</td>
<td>45</td>
<td>43</td>
</tr>
<tr>
<td>FWHM(E_{2g}^{1})</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>FWHM(A_{1g})</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

The prediction of layer number by Raman frequency difference is not a precise estimation for grown MoS$_2$, it correspondingly was confirmed by TEM. However, the typical $\Delta \omega$ of the synthesized nanosheets is larger than the reported value of exfoliated MoS$_2$ [32]. Further study is needed to understand this phenomenon. The calculated data for $\Delta \omega$ and Full width at half maximum (FWHM) of the samples are collected in Table 2.

3.4 TRIBOLOGICAL CONSIDERATIONS

Zeta potential is associated with the charge on the particle’s surface that influences on the properties of the colloidal materials such as their stability. The Zeta potential values can be used to define the double-layer properties of a colloidal dispersion. The higher Zeta potential demonstrates that the colloid is more stable. When Zeta potential is less negative than -15 mV, it is the beginning of particles agglomeration. The properties of the...
particle-liquid interface which studied by Zeta potential analysis could lead to practical applications by understanding the physical properties of suspensions and colloids. Nanoparticles with Zeta Potential values greater than 30 mV have high degrees of stability [39]. Particles aggregation would occur due to the Van der Waal interactions between particles with a low Zeta potential value. The agglomeration and stability of the samples based on the Zeta potential absolute values, which determines the static repellency of nanomaterials dispersed in oil, are shown in Fig. 6.

Fig. 6. Zeta potential of the MoS$_2$ samples with various laser irradiation at 27 °C and 35 °C.

The maximum value of Zeta potential for MoS$_2$ nanosheets and few-layered MoS$_2$ flakes in oil was obtained for 80 mJ of laser energy, which was ascribed to the optimum concentration of the few-layered MoS$_2$ flakes in the base oil. This high value of Zeta potential specifies enhanced nanomaterials dispersion in the base oil. For the samples under various laser energies, the absolute values of Zeta potential at 27 °C and 35 °C, are in the range of 32-54 mV, which is excellent stability.

To study the long-term stability of the additive in oil dispersions, Zeta Potential was done after one week and 18 months. It is obvious that after one week there is no change in Zeta Potential and after 18 months slight variations can be seen in Zeta Potential (Fig. 7).

Hydraulic oil is used to transmit pressure and energy and exhibit a constant viscosity regardless of its temperature. Many variables such as oil quality, operative parameters, and possible contamination would affect the lifespan of the hydraulic oil. Low-quality hydraulic oil will stimulate additional wear in the hydraulics and transmission. Hydraulic fluid can act as a sealant, coolant, and lubricant in equipment. In all hydraulic and lubricating fluids, practical limits were determined on the adequate operating temperature range, including high and low levels. Hydraulic fluids with high temperatures mostly damage materials used as seal compounds and accelerate the degradation of the oil. Besides, the viscosity of the fluid falls below the optimum value for the hydraulic system's components in high-temperature ranges. Composition of the fluid and the operative temperature are two main parameters defining the viscosity of hydraulic fluid. Low viscosity boundary is determined by the lubrication features of the oil and its resistance to cavitation, while the upper viscosity value is limited by the ability of the oil to be pumped. The viscosity also determines the safety operative windows for the hydraulic system by controlling the oil temperature. Hydraulic oil viscosity is remarkable at low temperatures because when the temperature is too low fluid viscosity is high.

Optimal properties of hydraulic oils studied by a combination of base oil and additives. They possess most of the essential characteristics of hydraulic oils. Additives in the base oils enhance
the anti-friction features as well as chemical and physical properties.

As mentioned earlier, viscosity is one of the most critical criteria in the selection of hydraulic fluid. There is a misunderstanding about the viscosity of the hydraulic fluid which reducing its viscosity will decrease operating temperatures, while higher viscosities may lead to a reduction in operating temperatures in applications. This phenomenon comes from the fact that hydraulic fluid with low viscosity reduces the volumetric efficiency of pumps and cause fluid overheating.

Table 3 presents the results of Oil Analysis Condition Monitoring of the samples and pure oil. The kinematic viscosity of the base oil and the samples under various laser energies were calculated at 40 and 100 °C, which decreases with increasing the temperature. The maximum acceptable kinematic viscosity is 300 cSt (DIN.51.381). Low (high) viscosity causes lubricant (hydraulic) ability of the oil. Therefore, at 40 °C the samples show hydraulic properties.

Table 3. Oil Analysis Condition Monitoring of the samples and pure oil.

<table>
<thead>
<tr>
<th>Test</th>
<th>Unit</th>
<th>T.T.* (°C)</th>
<th>Oil (0)</th>
<th>Oil (1)</th>
<th>Oil (40)</th>
<th>Oil (60)</th>
<th>Oil (80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic</td>
<td>cSt</td>
<td>40</td>
<td>61.01</td>
<td>65.23</td>
<td>68.69</td>
<td>73.26</td>
<td>72.33</td>
</tr>
<tr>
<td>Kinematic</td>
<td>cSt</td>
<td>100</td>
<td>10.25</td>
<td>12.34</td>
<td>14.23</td>
<td>15.22</td>
<td>16.24</td>
</tr>
<tr>
<td>Viscosity</td>
<td></td>
<td></td>
<td>-</td>
<td>156</td>
<td>159</td>
<td>159</td>
<td>160</td>
</tr>
<tr>
<td>Density</td>
<td>Kg/m³</td>
<td>15</td>
<td>850</td>
<td>865</td>
<td>853</td>
<td>857</td>
<td>856</td>
</tr>
<tr>
<td>Pour Point</td>
<td>°C</td>
<td>-</td>
<td>-35</td>
<td>-30</td>
<td>-33</td>
<td>-37</td>
<td>-39</td>
</tr>
<tr>
<td>Flash Point</td>
<td>°C</td>
<td>-</td>
<td>250</td>
<td>255</td>
<td>262</td>
<td>266</td>
<td>285</td>
</tr>
</tbody>
</table>

*Test Temperature

The viscosity index is proportional to the inverse of temperature variations. It means when the viscosity index is high, the changes of viscosity with the variations of the temperature is low. By controlling the viscosity at optimized levels is possible to stabilize the oil film even at high temperatures. The viscosity higher than 130 is the standard application (DIN.51.381). The density of the oil increases by additives, but after laser irradiation, a reduction in density occurs. It means that multilayer MoS₂ has changed to few-layered MoS₂ flakes confirming TEM results.

Based on Table 3, the range of pour point and flash point after laser irradiation has been increased compared to the base oil. Therefore, the oil has a more extensive application range.

By reducing the friction coefficient due to friction modifiers, less fuel will be consumed. Most of these modifiers have the layered molecular structure, which makes the particles easily slide over each other. Figure 8 shows the friction coefficient as a function of time for the submitted to different laser intensity. According to Fig. 8, the friction coefficient of the Oil (80) is always lower than that of the other samples.

Fig. 8. Friction coefficient versus time by the four-ball test for the samples submitted to different laser intensities.

Based on Table 3, the range of pour point and flash point after laser irradiation has been increased compared to the base oil. Therefore, the oil has a more extensive application range.

By reducing the friction coefficient due to friction modifiers, less fuel will be consumed. Most of these modifiers have the layered molecular structure, which makes the particles easily slide over each other. Figure 8 shows the friction coefficient as a function of time for the submitted to different laser intensity. According to Fig. 8, the friction coefficient of the Oil (80) is always lower than that of the other samples.

Fig. 9. Wear scar of the upper ball on the contacted surface with lubrication using the a) Oil (0), b) and Oil (80).
Figure 9 shows the SEM images of the produced worn surfaces using Oil (0) and Oil (80). The rubbed surface of the Oil (0) shows wide and deep ruts compared to the Oil (80). As expected, strong adherence of a film formed by the nanosheets to the contacts on the rubbing surfaces could enhance the tribological properties. However, the superior friction reduction and anti-wear behaviour of dispersed few-layered MoS$_2$ in oil are distinct for metal-to-metal contact at interfaces.

To be expected, these results indicate that the few-layered MoS$_2$ are suitable materials and could help the lubricant via friction reduction.

The wear scar diameter (WSD) can be calculated with the details in ref [40]. The plots of WSD for the samples after one week and 18 months are shown in Fig. 10. It can be seen that the WSDs in the presence of the additive is reduced. The most reduction are 26.8 % (after one week) and 25 % (after 18 months) for Oil (80) compared with base Oil (0).

Flash Temperature Parameter (FTP) was first introduced by Lane [41]. FTP is the limit of temperature that oil makes the lubricating films properly lubricate. The higher FTP points out the better lubrication performance. When FTP is low, the lubrication films are broken down and as a result lubrication performance is poor.

\[
FTP = \frac{Applied \ load}{(Wear \ scan \ diameter)^{1/4}} = \frac{W}{d^{1/4}}
\]

where W indicates the applied load in kg, and d is the value of the wear scar diameter (WSD) in mm.

Fig. 10. Wear scar diameter of the samples after a) one week and b) 18 months.

Fig. 11. FTP of the samples after a) one week and b) 18 months.

The results of FTP calculation are shown in Fig. 11, with an applied load of 40 kg. FTP of Oil (80) has increased 54.3 % (after one week) and 49.6 % (after 18 months) compared with base Oil (0).

4. CONCLUSION

We reported a novel method to synthesize the few-layered MoS$_2$ flakes using the hydrothermal method and the laser irradiation assistant method. The presented process enables large-scale production of few-layered MoS$_2$ flakes from MoS$_2$ nanosheets. XRD patterns confirmed the reduction of crystallite size. TEM images showed exfoliation of MoS$_2$ nanosheets. The tribology investigations of
few-layered MoS$_2$ flakes exhibited decreasing of the friction coefficient under laser irradiation. The stability of few-layered MoS$_2$ flakes dispersed in oil corroborated by Zeta potential measurements of the samples. The results of the kinematic viscosity evaluation showed its increasing under laser energy, which is excellent for hydraulic oil. In addition, lubricant film building capability was analyzed by increasing temperature. The range of pour point and flash point after laser irradiation increased. The wear scar diameter reduction and enhancement of FTP of Oil (80) were 26.8 % and 54.3 % compared with base Oil (0) after one week, respectively. The results showed that adding laser-irradiated samples to the pure oil, as well as increasing the laser energies from 40 to 80 mJ, makes few-layered MoS$_2$ flakes a favorable behavior for hydraulic utilization.

REFERENCES

