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A B S T R A C T 

Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol (PETG) are 
widely used in additive manufacturing for engineering applications. However, 
their tribological performance, particularly in recycled forms, remains 
underexplored. This study evaluates the wear behavior of virgin and recycled 
PLA and PETG under dry and lubricated conditions using a pin-on-disk 
tribometer. Key tribological parameters, including wear rate, friction 
coefficients, energy dissipation, and temperature rise, were measured across 
336 samples. Machine learning models were employed to predict wear rate 
and classify material-lubrication performance. Gradient Boosting Regression 
achieved the highest prediction accuracy (R² = 0.698, RMSE = 0.1336), with 
energy dissipation emerging as the most influential factor. Classification 
models distinguished between high and low-performing conditions, with 
Logistic Regression achieving an accuracy of 88%. Data augmentation using 
a Gaussian Mixture Model-based approach enhanced model robustness by 
expanding the dataset from 168 to 336 samples. Experimental results indicate 
that recycled materials exhibit higher wear rates, but lubrication significantly 
reduces material loss. These insights are crucial for manufacturing, 
biomedical, and automotive applications, where selecting appropriate 
materials and lubrication strategies can enhance overall durability and 
efficiency. This study demonstrates the integration of tribological testing with 
machine learning, providing a data-driven approach for wear prediction and 
material optimization. 
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1. INTRODUCTION

The growing adoption and standardization of 3D 
printing has revolutionized material 
manufacturing industries allowing for the rapid 
prototyping and production of intricate designs 

[1]. However, its widespread use has also brought 
environmental concerns to the forefront as the 
virgin polymers used in 3D printing significantly 
contribute to the plastic waste issue. Virgin 
polymers generate more waste because they are 
hard to recycle and 3D printing consumes large 
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volumes that current recycling systems cannot 
handle. To address the waste, recycled polymers 
are emerging as a viable alternative [2,3]. They 
align with sustainability practices while also 
bringing down production costs and resolving 
the requirements for virgin material [4].  
 
Among the widely used 3D printing materials, 
Polylactic Acid (PLA) and Polyethylene 
Terephthalate Glycol (PETG) are the most 
prominent, as they have high strength versatility, 
and ease of use as printing material. Usually, 
materials used for a prototype model will be 
discarded once its purpose is served. The material 
can be recycled and reused for functional 
applications. But their properties will differ in 
comparison to virgin polymers. Hence, key 
differences between virgin and recycled plastics be 
understood for their future consideration in real-
world tribology applications [5,6].  
 
Also, to consider the materials for dynamic 
applications tribological properties such as the 
Coefficient of Friction (COF) and wear rate play 
an important role. These properties are 
influenced by factors such as load, lubrication, 
and material composition [7]. Virgin polymers 
are known to provide better performance, 
however, recycled polymers may show variations 
in performance because of the recycling process. 
Further research is required understand these 
differences in properties and how they relate to 
industrial use [8,9].  
 
This article compares the tribological 
properties of virgin and recycled PLA and PETG 
materials. Experiments were conducted under 
different loads and lubrication conditions to 
cover a wide range of practical scenarios. 
Important parameters such as static and kinetic 
friction, wear rate, and energy loss were 
measured. Machine Learning methods, such as 
regression and classification, were used to 
predict the wear behavior. These methods will 
help in predicting the wear behavior and 
identify which materials perform better under 
different conditions [10,11].  
 
The results of this work will encourage sustainable 
practices in polymer 3D printing. By clearly 
knowing how recycled polymers behave with 
respect to wear and friction, engineers can choose 
the recycled polymers appropriately in applications 
that require good durability and efficiency.  

2. LITERATURE REVIEW 
 
2.1 Tribological studies in polymers 
 
Polymers are commonly used in 3D printing 
leading to a lot of research on their mechanical 
and wear properties to improve their use and 
performance [12]. Polymers are chosen over 
other materials because of their high strength, 
ease of processing, and flexibility in 3D printing 
applications. PLA and PETG are the two most 
popular materials in polymer 3D printing and 
their performance under frictional loading and 
wear conditions remains a critical factor in 
determining their suitability for engineering 
applications [13]. Anderson demonstrated the 
mechanical differences between virgin and 
recycled PLA. The study revealed that recycled 
polymers can achieve tribological properties 
comparable to virgin polymers if processed 
under controlled conditions [14]. The study 
reported that careful control of recycling 
conditions can reduce the performance gap 
between virgin and recycled PLA, often keeping 
key metrics within a 15–20% range. 
 
The interest in recycled polymers comes from 
global pursuit of sustainability. Studies by 
Gbadeyan et al. demonstrated that recycled PLA 
structures show significant potential for reducing 
environmental impact while maintaining 
appropriate wear resistance for industrial 
applications [15].  
 
2.2 Tribology of recycled and virgin polymers 
 
Several studies have compared the tribological 
properties of recycled and virgin polymers. 
Maraveas et al analyzed recycled plastics in 3D 
printing indicating that recycled PLA maintains 
much of its strength and frictional performance if 
optimized properly for the process [3]. Maraveas 
improved the recycling process by adjusting the 
parameters such as extrusion temperatures, 
printing speeds, and using post-processing 
treatments such as annealing and chain 
extenders to reduce thermal degradation without 
loss in strength, helping recycled PLA retaining 
up to 85% of its original strength. Ramadan and 
Hassan investigated PLA and PETG using pin-on-
disk apparatus and found that adding lubrication 
greatly improves the wear resistance of recycled 
plastics, especially under high loads [16]. Also, 
Aziz et al. studied the wear behavior of recycled 
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PETG and found that better surface finish results 
in reduced friction and wear rates [17]. This 
study demonstrates that even with slight 
improvement in surface finish leads to significant 
gains in wear performance, indicating the 
importance of post-processing.  
 
The above studies shows that the recycled 
polymers are suitable for tribological 
applications when used with optimal design 
parameters such as surface finish, lubrication, 
and 3D printing parameters such as extrusion 
temperature, printing speed and post processing 
techniques.  
 
2.3 Influence of lubrication and load 
 
Lubrication and load are the two important 
parameters in tribological studies. Chan et al. 
examined how lubrication reduces the friction in 
PLA composites and noted that lubrication is 
effective and needed only at higher loads, when 
surface interacts more strongly [18]. Their study 
showed measurable improvements, indicating 
that lubrication significantly lowers friction and 
increases the machine component life . Similarly, 
Tyagi et al. reviewed the influence of load on wear 
behavior and found that recycled polymers 
perform better under lower loads due to less 
permanent deformation [19].  
 
The combined effect of load and lubrication was 
also explored by Deshmukh et al. who used 
experimental and numerical methods to predict 
frictional behavior under different conditions and 
concluded that lubrication helps to overcome the 
material deficiencies. [20].  
 
2.4 Processing parameters in additive 

manufacturing 
 
Parameters used in 3D printing equipment 
during the component preparation also strongly 
affects the tribological properties. Farooq and 
Ranjan published a 2023 study demonstrating 
that layer thickness and infill density are the two 
important factors that affects the wear 
resistance, noting that recycled PLA with higher 
infill densities shows improved strength and 
resistance to wear [21]. Their findings indicate 
that even a 10% increase in infill density leads 
to noticeable improvements in wear resistance, 
indicating the importance of 3D printer 
parameters.  

The effect of post-processing techniques on 
tribological behaviour was analysed by Dizon et 
al. also in a 2023 study in which they reported 
that annealing improved the surface hardness 
and reduced wear during sliding actions as a 
result of improvement in microstructure [22]. 
These results agree with reports from Ramadan 
and Hassan who showed that the surface 
treatments can significantly increase the 
performance of recycled polymers. These studies 
collectively note that optimising both printing 
parameters and post processing processes play 
an important role in improving the wear 
resistance of 3D printed polymers.  
 
2.5 Processing parameters in additive 

manufacturing 
 
Statistical and modeling approaches have been 
widely implemented in tribological research. 
Marian et al. have explored the application of 
machine learning in tribology in a 2022 paper. 
They concluded that regression models are 
effective for predicting friction coefficients, while 
classification techniques help identify material 
suitability under specific conditions [23]. Ezzaraa 
et al. utilized finite element modeling to analyze 
the wear behavior of recycled polymers. Their 
study provided insights into material 
performance under dynamic loading condition 
[24]. The studies numerical approach helped 
quantify the effect of load variations on wear, 
offering a complementary perspective to 
experimental observations. These numerical 
techniques assist the experimental studies by 
providing predictive capabilities and reducing 
the need for extensive testing. The integration of 
statistical and computational methods enhances 
our understanding of wear mechanisms and 
supports more efficient material selection.  
 
The existing literature highlights the potential of 
recycled polymers in 3D printing. However, studies 
comparing their tribological performance with 
virgin polymers remain limited. Most research 
focuses on mechanical properties, neglecting 
friction, wear, and energy dissipation under varying 
loads and lubrication. Additionally, the role of 
processing conditions and lubrication on recycled 
polymers is not fully understood. Predictive 
analysis using advanced statistical tools is also 
scarce in this domain. This study addresses these 
gaps by analyzing and predicting tribological 
behavior with a focus on recycled PLA and PETG. 
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3. MATERIALS AND METHODS 
 

3.1 Materials 

 
The study focuses on two widely used polymers: 
PLA (Polylactic Acid) and PETG (Polyethylene 
Terephthalate Glycol-modified). Both virgin and 
recycled variants were considered. Recycled 
polymers were processed to ensure homogeneity 
by extrusion and pelletization. The materials 
were selected for their relevance in 3D printing 
and tribological studies as they are commonly 
used for applications that demand good strength, 
flexibility, and wear resistance. 
 
3.2 Specimen preparation 
 
Samples were prepared using a standard Fused 
Filament Deposition Modeling (FDM) 3D printer. 
The 3D printing process was performed using a 
nozzle diameter of 0.4 mm, a layer thickness of 
0.2 mm, an infill density of 100%, a raster angle 
of 45°, and a printing speed of 50 mm/s for both 
virgin and recycled polymers. 
 
In our study, the recycling process for PLA and PETG 
involved three successive recycling cycles. In each 
cycle, the polymer waste was thoroughly cleaned to 
remove impurities and contaminants, then 
remelted under controlled extrusion conditions to 
minimize thermal degradation and preserve 
molecular weight. After melting, the recycled 
polymers were extruded through a die to form 
continuous filaments suitable for 3D printing. The 
extrusion process was carefully controlled in terms 
of temperature and pressure, ensuring that the 
filament had a uniform diameter and maintained 
consistent mechanical properties. Finally, the 
extruded filament was cooled, spooled, and used as 
feedstock in the subsequent 3D printing process. 
 
Cylindrical pins with a diameter of 10 mm and height 
of 20 mm were prepared. These dimensions adhere 
to ASTM G99 standards for tribological testing. 
 
A total of 48 specimens were prepared - 12 for 
each material (virgin PLA, recycled PLA, virgin 
PETG, recycled PETG); 24 were tested under dry 
conditions and 24 under lubricated conditions. 
 
3.3 Experimental setup 
 
Tribological properties were tested using a pin-
on-disk tribometer as shown in Fig. 1. 

 
Fig. 1. Pin on disc tribometer. 

 
The prepared cylindrical pins were placed in 
contact with a rotating steel disk. The disk 
material is Hardened steel with a surface 
roughness of Ra = 0.2 µm. Four normal loads 
were applied (20 N, 40 N, 60 N, 80 N). A constant 
sliding speed of 0.1 m/s was maintained. The 
tests were conducted for a total sliding distance 
of 1000 m. For lubricated conditions, SAE 15W-
40 oil was used as the lubricant. 
 
Surface temperature during sliding was 
monitored using a non-contact infrared 
thermometer. The tribometer recorded the 
frictional force continuously throughout the test. 
 
3.4 Test Conditions and data collection 
 
Tests were conducted in both dry and lubricated 
conditions. Dry condition simulate standard wear 
scenarios where no external lubricant is applied. 
Lubrication is applied to reduce friction and 
wear. Each test was repeated three times to 
ensure the reproducibility and reliability of 
results. Variations were minimized by cleaning 
the disk and replacing the pins between tests. The 
following tribological parameters were recorded 
for each test: (a) Static Coefficient of Friction 
(COF): Force required to initiate sliding, (b) 
Kinetic Coefficient of Friction (COF): Force 
required to sustain sliding, (c) Wear Rate 
(mm³/m): Material loss per unit sliding distance, 
(d) Energy Dissipated (J): Energy lost due to 
friction and (e) Temperature Rise (°C): Increase 
in surface temperature during sliding.  
 
To improve the scope of the study, a Gaussian 
Copula-based multivariate data augmentation 
method was employed. This technique generated 
an additional 168 synthetic data points by 
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capturing the statistical relationships and 
distributions observed in the original dataset of 
168 rows. The final augmented dataset of 336 
rows kept the original data intact while 
expanding the range of conditions analysed. 
 
A detailed analysis was performed using the 
augmented dataset. Regression models, including 
Random Forest and Gradient Boosting, were used to 
predict wear rate. Classification models like Logistic 
Regression and SVM helped assess material 
performance under dry and lubricated conditions.  
 
Feature importance analysis from both models 
identified key factors influencing wear and 
tribological performance. These combined 
methods provide a better understanding of 
tribological behaviour. The results also indicate 
how temperature rise, energy dissipation and 
wear mechanisms are related to each other.  
 
 
4. RESULTS AND DISCUSSIONS 

 
4.1 Overview of tribological performance 
 
The tribological performance parameters were 
analyzed to study their variations. Key factors such 
as wear rate, energy dissipation, and temperature 
rise were examined. The influence of material type, 
lubrication conditions, and other parameters were 
also considered. Table 1 presents the statistics for 
the main tribological properties. These statistics 
provide a numerical summary of the experimental 
data. They also highlight the variations in their 
performance under different conditions.  
 
The data in Table 1 reveals substantial variability in 
the energy dissipated and wear rate. This 
variability is influenced by factors such as material 
composition and lubrication conditions. The 
correlation between tribological parameters is 
visualized in Figure 2, which depicts a heatmap of 
the correlation matrix. Strong positive correlations 
are observed between energy dissipation, wear 
rate, and friction forces. For instance, the wear rate 
has a correlation of 0.71 with energy dissipated, 
indicating a significant dependence. 
 
The wear rate trends across materials and 
lubrication conditions are summarized in Table 
2. The results demonstrate that recycled 
materials exhibit higher wear rates than their 
virgin counterparts. This trend is consistent 

across both dry and lubricated conditions. 
However, lubrication significantly reduces the 
wear rate for all materials, as shown in Figure 4. 
 
Table 1. Descriptive statistics of tribological parameters. 

Parameter Mean 
Std. 
Dev. 

Min Max 

Wear Rate 
(mm³/m) 

1.353 0.260 0.572 2.132 

Energy 
Dissipated (J) 

74.22 45.57 -2.28 215.67 

Temperature 
Rise (°C) 

18.95 3.473 10.48 27.729 

Static Friction 
Force (N) 

41.82 21.14 1.258 83.231 

Kinetic 
Friction Force 

(N) 
31.3 15.85 1.719 62.565 

 

 
Fig. 2. Correlation matrix of tribological features. 
 
Table 2. Comparison of wear rate by material and 
lubrication type. 

Material Condition 
Mean Wear 

Rate 
(mm³/m) 

Std. Dev. 

Virgin PLA Dry 1.2 0.2 

Virgin PLA Lubricated 1.1 0.1 

Recycled 
PLA 

Dry 1.6 0.3 

Recycled 
PLA 

Lubricated 1.4 0.2 

Virgin 
PETG 

Dry 1.3 0.2 

Virgin 
PETG 

Lubricated 1.2 0.1 

Recycled 
PETG 

Dry 1.7 0.3 

Recycled 
PETG 

Lubricated 1.5 0.2 
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The wear rate distribution for different materials 
is illustrated in Figure 3, while the impact of 
lubrication is depicted in Figure 4. In both figures, 
it is evident that recycled materials exhibit 
broader distributions and higher mean values. 
 

 
Fig. 3. Wear rate by material. 

 

 
Fig. 4. Wear rate by lubrication type. 
 

This distribution suggests that recycled polymers 
may be less resistant to wear due to changes in 
molecular structure during recycling. Energy 
dissipation affects the wear mechanisms of the 
material. Temperature rise also plays a crucial role 
in this process. The relationship between these 
factors and wear rate is illustrated in Figure 5, 
which depicts a scatter plot with temperature rise 
as the colour scale. The figure demonstrates that 
higher energy dissipation corresponds to increased 
wear rates, particularly under dry conditions. An 
increase in temperature worsens the wear effect 
emphasizing the need for proper heat control in 
tribological systems. The tribological performance 
analysis shows important trends and connections 
between different factors. Recycled materials are 
more sustainable but tend to wear out faster, 
especially in dry conditions. Lubrication will 
significantly reduce the wear rate, minimizing these 
challenges.  

 
Fig. 5. Effect of energy dissipated and temperature 
rise on wear rate. 

 
These results offer useful guidance for 
designing better tribological systems using 3D-
printed polymers. The tribological 
performance analysis shows important trends 
and connections between different factors. 
Recycled materials are more sustainable but 
tend to wear out faster, especially in dry 
conditions. Lubrication will significantly 
reduce the wear rate, minimizing these 
challenges. These results offer useful guidance 
for designing better tribological systems using 
3D-printed polymers. 
 
4.2 Model-based analysis of wear rate 
 
Regression Model Performance: Regression 
models like Linear Regression, Random Forest, 
and Gradient Boosting were evaluated for their 
accuracy and prediction of wear rate.  
 
The performance of each model was measured 
using Root Mean Squared Error (RMSE) and R² 
Score. Table 3 shows the results of the models 
before hyperparameter tuning, while Table 4 
shows the metrics after hyperparameter 
tuning.  
 
Table 3. Performance metrics before hyperparameter 
tuning. 

Model RMSE R² Score 

Linear 
Regression 

0.1472 0.6345 

Random Forest 0.1441 0.6494 

Gradient 
Boosting 

0.1399 0.6699 
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Table 4. Performance metrics after hyperparameter 
tuning. 

Model Best Parameters RMSE 
R² 

Score 

Random 
Forest 

max_depth=15 
n_estimators=50 

0.1419 0.6602 

Gradient 
Boosting 

learning_rate=0.1ma
x_depth=5 

n_estimators=50 
0.1337 0.6985 

 

The results indicate that Gradient Boosting has 
performed more precisely than the other models 
as it achieved an R² score of 0.6699 and an RMSE 
of 0.1399. After tuning the hyperparameters, all 
models showed improvement. The updated 
results are recorded in Table 4.  
 

Following hyperparameter tuning, the Gradient 
Boosting model demonstrated a notable 
improvement, achieving the best results with an 
R² score of 0.6985 and an RMSE of 0.1337. These 
metrics indicate that the model accurately 
captured the wear rate trends under various 
tribological conditions. The Random Forest model 
also showed a slight enhancement, reaffirming the 
utility of ensemble methods for this dataset. 
 

The accuracy of the regression models was 
further assessed by comparing the predicted 
wear rate against observed values. Figure 6 
presents the scatter plot for Gradient Boosting, 
the best-performing model.  
 

In Figure 6, the data points align closely with the 
ideal fit line, showcasing a strong correlation 
between predicted and actual wear rates. The 
close proximity between the predicted and actual 
rate indicates the model's high predictive 
accuracy. However, slight deviations at higher 
wear rates suggest the presence of additional 
factors influencing wear mechanisms, which are 
not currently accounted for.  
 

 
Fig. 6. Regression model predictions for. 

Gradient Boosting (Predictions Vs. Ideal Fit) 
Feature Importance Analysis: The effect of 
different tribological parameters on wear rate 
was studied using feature importance scores 
from the Random Forest and Gradient Boosting 
models. Figure 7 shows the relative importance 
of these features. Feature importance was 
determined by measuring how much each 
parameter reduced prediction error, as 
computed by Random Forest and Gradient 
Boosting models. 
 
From Figure 7, it can be observed that the Energy 
Dissipated (J) was the most important factor in 
predicting wear rate, as the higher energy loss 
through friction leads to more material wear. 
This measurement factors in basic tribology 
principles, material type and lubrication as they 
helped in reducing wear under different 
operating conditions. 
 

 
Fig. 7. Feature importance analysis. 

 
Other factors, like Temperature Rise (°C) and 
Load (N), had a moderate effect on results. Their 
impact is likely due to their influence on energy 
dissipation. 
 
This study demonstrates that machine learning 
models can help predict wear behavior in 3D-
printed polymers. Among the models tested, 
Gradient Boosting performed the best, accurately 
capturing the complex relationship between 
wear rate and various other factors. Energy 
Dissipated (J) was found to be the most important 
factor affecting wear rate which aligns well with 
fundamental tribology principles. When more 
energy is lost due to friction, the material wears 
out faster with the effect strengthening under 
high loads. These results can assist in selecting 
better materials and optimizing operating 
conditions. Proper adjustments suggested from 
these models can also reduce wear and improve 
machine performance. Material type also plays a 
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key role in wear behavior. Virgin and recycled 
polymers demonstrate different levels of wear 
rate. Recycled PETG exhibited higher wear rates 
under dry conditions, reflecting its limitations in 
unlubricated applications. However, lubrication 
significantly reduced wear across all material 
types, as observed in Table 3 and Figure 5. This 
detail underscores the importance of lubrication 
in extending component life in sliding systems. 
 
Temperature Rise (°C), though less influential, 
than energy dissipated demonstrates thermal 
effects on wear. Higher temperatures accelerated 
material degradation, especially in recycled 
materials. This finding emphasizes the need for 
thermal management in tribological systems 
using 3D-printed components. These results are 
directly relevant to sustainable engineering 
practices demonstrating how recycled materials, 
when combined with optimal operational 
strategies, can deliver acceptable performance. 
Additionally, machine learning tools offer a 
robust tool for material design and performance 
prediction, paving the way for data-driven 
solutions in tribology. 
 
4.3 Classification model results 
 
In this study, material-lubrication configurations 
were categorized into low-performing (Class 0) 
and high-performing (Class 1) material-
lubrication combinations. 

• Class 0 (Low Performance): These materials 
exhibited higher wear rates, greater energy 
dissipation, and significant temperature rise, 
leading to poor tribological behavior. 
Examples: Dry Recycled PETG, Dry Virgin PLA 
(higher wear and friction). 

• Class 1 (High Performance): These materials 
demonstrated lower wear rates, minimal 
frictional losses, and stable thermal behavior, 
making them more suitable for tribological 
applications. Examples: Lubricated Virgin 
PETG, Lubricated Recycled PLA (better wear 
resistance). 

 
The models were trained using a dataset of 336 
samples (168 experimental + 168 augmented), 
split into 80% training (268 samples) and 20% 
testing (68 samples) to ensure general results.  
Performance of Classification Models: Table 5 
presents the classification performance of four 
machine learning models after hyperparameter 

tuning. Each model exhibited distinct strengths 
and limitations in predicting tribological 
performance. From Table 5, the following 
observations can be made: 

1. Logistic Regression (87% accuracy) 

• Performed best overall, achieving 96% 
recall for Class 1. 

• It effectively identified high-performing 
material-lubrication pairs. 

• However, 30% of Class 0 samples were 
misclassified, indicating the models 
difficulty with recognizing low-
performance cases. 

2. Support Vector Machine (SVM) (75% accuracy) 

• Performed poorly compared to other 
models, particularly in identifying low- 
performance samples (50% recall for Class 
0). 

• This result suggests overfitting to high-
performance materials, potentially due to 
boundary overlap in wear rates and energy 
dissipation. 

• 80% precision for Class 1 indicates that the 
model reliably predicts high-performance 
cases but struggles with borderline 
conditions. 

3. Random Forest (82% accuracy) 

• Showed a more balanced classification, 
with 65% recall for Class 0 and 90% for 
Class 1. 

• Precision was consistent across both 
classes, minimizing false positives.  

• Its feature importance analysis (discussed 
later) suggests that temperature rise and 
lubrication were strong predictive factors. 

4. Gradient Boosting (81% accuracy) 

• Achieved a strong balance in precision and 
recall for both classes.  

• Performed similarly to Random Forest but 
with slightly lower recall for Class 0 (60%). 

• Handles non-linearity better than Logistic 
Regression, but overfitting is possible with 
small datasets. 

• Ideal for applications requiring fine-tuned 
classification of borderline cases.
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Table 5. Classification performance metrics for low- and high-performance classes. 

Model 
Best 

Hyperparameters 
Accuracy 

Precision 
(Class 0) 

Recall 
(Class 0) 

Precision 
(Class 1) 

Recall 
(Class 1) 

F1-
Score 

Logistic 
Regression 

C=10 87% 0.88 0.70 0.88 0.96 0.85 

SVM C=10, kernel=rbf 75% 0.59 0.50 0.80 0.85 0.68 

Random 
Forest 

max_depth=15, 
n_estimators=50 

82% 0.72 0.65 0.86 0.90 0.78 

Gradient 
Boosting 

learning_rate=0.2, 
max_depth=5, 

n_estimators=150 
81% 0.71 0.60 0.84 0.90 0.76 

Confusion Matrix Analysis: To visually illustrate 
the classification performance, Figures 8 and 9 
presents the confusion matrix for Logistic 
Regression (the best model) and Gradient 
Boosting (the second-best model). The 
interpretation of the confusion matrix is as 
follows: 

• True Positives (Class 1 correctly identified): 
45 samples for Logistic Regression, 43 
samples for Gradient Boosting. 

• False Negatives (Class 1 misclassified as Class 
0): 3 samples for Logistic Regression, 5 
samples for Gradient Boosting. 

• False Positives (Class 0 misclassified as Class 
1): 6 samples for Logistic Regression, 8 
samples for Gradient Boosting. 

• True Negatives (Class 0 correctly identified): 
14 samples for Logistic Regression, 12 
samples for Gradient Boosting. 

 
Logistic Regression demonstrates slightly higher 
precision in identifying true positives with fewer 
false negatives, whereas Gradient Boosting, 
despite having a marginal increase in false 
positives, provides a robust performance in 
identifying complex patterns within datasets. 
 
The classification models provide a data-driven 
approach to predicting tribological performance, 
which helps in identifying optimal material-
lubrication combinations. The results indicate that 
lubrication significantly improves wear resistance, 
aligning with experimental findings. The models 
effectively differentiate between low and high-
performing material pairs, reducing the reliance on 
extensive physical testing. The analysis highlights 
that temperature rise and energy dissipation 
strongly influence wear behavior. Higher wear 
rates correspond to greater heat generation, 
leading to material degradation.  

Random Forest and Gradient Boosting models 
identified these conditions as key predictive 
factors, reinforcing their practical role in material 
selection.The results from this study will help 
engineers make better choices in tribological 
components. In industries like automotive and 
biomedical, using low-friction and high-wear-
resistant materials can increase the lifespan of 
moving parts significantly reducing costs 
incurred through maintenance and replacement. 
 

 
Fig. 8. Confusion matrix for logistic regression. 

 

 
Fig. 9. Confusion matrix for gradient boosting. 
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Machine learning methods can assist in tribology-
based material selection while also reducing the 
energy loss and improving efficiency in high-
friction conditions.  
 
4.4 Data augmentation 
 
The experimental dataset of 168 rows 
provided a basic understanding of tribological 
performance. However, its small size reduced 
the accuracy and reliability of machine 
learning models. The minimum number of data 
points required to apply ML models and obtain 
proper regression and classification results are 
usually more than 300. To solve this issue, data 
augmentation was used to artificially increase 
the dataset. All the results discussed earlier 
were obtained using the augmented dataset. 
This section explains the augmentation 
method used, its effect on model performance, 
and its significance for improving reliability. 
Need for Data Augmentation: The original 
dataset had 168 rows covering different 
materials and test conditions. However, this 
small dataset proved difficult to train machine 
learning models accurately. Small datasets can 
cause overfitting which trains models to 
remember patterns rather than learn useful 
relationships. Additionally, some material and 
test condition combinations had very few 
samples which would create errors in model 
predictions. To resolve these issues, data 
augmentation was performed. This 
implementation expanded the dataset while 
keeping the original data meaningful. Another 
168 synthetic data points were added resulting 
in a final dataset of 336 rows.  
 
The aim was to create a balanced and diverse 
dataset while maintaining accurate wear 
behaviour. Methodology for Data 
Augmentation: A Gaussian Mixture Model 
(GMM) was used to generate synthetic data. 
The Gaussian Mixture Model (GMM)-based 
augmentation fits multiple Gaussian 
distributions to the original data, preserving 
the means and variances while introducing 
small, controlled variations to mimic real-life 
uncertainty, thereby generating synthetic 
samples that closely reflect the natural 
variability observed in the experimental 
measurements. GMM is prone to slight biases 
which may occur due to limited initial 
variability. 

1. Feature Distribution Analysis: 

• The probability distributions of key 
tribological parameters (Load, Friction 
Forces, Energy Dissipation, Temperature 
Rise, Wear Rate) were analyzed. 

• Histograms and kernel density estimation 
(KDE) plots confirmed that the data 
followed multi-modal distributions, 
making GMM a suitable approach. 

2. Gaussian Mixture Modeling (GMM): 

• A GMM with multiple Gaussian 
components was fitted to the original 
dataset. 

• Each tribological feature was modelled as a 
mixture of Gaussian distributions, allowing 
synthetic data points to be sampled while 
preserving real-world variability. 

• The optimal number of Gaussian 
components was determined using the 
Bayesian Information Criterion (BIC). 

3. Synthetic Data Generation: 

• New data points were sampled from the 
fitted GMM, ensuring that they adhered to 
the statistical distribution of the original 
data. 

4. Validation and Integration: 

• The synthetic data was statistically 
compared with the original dataset using 
mean, variance, and distribution overlap 
measures. 

• Feature distributions were plotted (Figure 
10 to Figure 15) to confirm that the 
generated data was neither over-
smoothened nor unrealistic. 

• Finally, the synthetic data was combined 
with the original dataset to form an 
augmented dataset with 336 rows. 

 

 
Fig. 10. Feature distribution plot for load. 
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Fig. 11. Feature distribution plot for static friction force. 

 

 
Fig. 12. Feature distribution plot for kinetic friction force. 

 
Impact on Model Performance: To evaluate the 
impact of data augmentation, machine learning 
models were trained separately on: 

1. The original dataset (168 rows). 

2. The synthetic dataset (168 rows). 

3. The augmented dataset (336 rows: original + 
synthetic). 

 

 
Fig. 13.Feature distribution plot for energy dissipated. 

 

 
Fig. 14. Feature distribution plot for temperature rise. 

 
Fig. 15. Feature distribution plot for wear rate. 

 
Table 6 summarizes the mean performance scores 
across these datasets. The original dataset provided 
the most accurate performance as it directly 
reflects experimental data. The synthetic dataset, 
while slightly lower in performance, introduced 
statistical diversity that improved model 
robustness. The augmented dataset effectively 
balanced these aspects, yielding results comparable 
to the original dataset while preventing overfitting. 
Reliability and Practical Implications: The feature 
distribution plots above confirm that the 
augmented dataset closely followed the statistical 
trends of the original data which ensures that 
machine learning models trained on the augmented 
(extended) dataset maintain physical relevance to 
real-world tribological conditions. 
 
Table 6. Performance comparison of original, 
synthetic, and augmented datasets. 

Dataset Mean Performance Score 

Original Dataset 

(168 rows) 
0.738 

Synthetic Dataset (168 
rows) 

0.726 

Augmented Dataset (336 
rows) 

0.732 

 

The augmentation process allowed for a better 
representation of rare material-lubrication-load 
combinations, improving the generalization 
ability of classification models. Additionally, 
models trained on the augmented dataset 
exhibited reduced variance, confirming that 
augmentation increased stability without 
introducing significant artifacts. 
 

This approach is especially valuable in mechanical 
engineering applications, where collecting large-
scale experimental data is challenging due to cost 
and time constraints. By leveraging GMM-based 
augmentation, this study bridges the gap between 
experimental limitations and the need for robust 
predictive modelling in tribology. 
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4.5 Discussion on practical applications and 
scope for future work 

 
The findings of this study provide valuable 
insights into material selection and lubrication 
strategies for reducing wear and improving 
durability. A comprehensive comparison shows 
that recycled polymers exhibit up to 15–20% 
higher wear rates under dry conditions 
compared to virgin materials, which aligns with 
findings in recent tribological literature. This 
emphasizes the need for proper lubrication in 
applications where material degradation is a 
concern. The results indicate that energy 
dissipation and surface temperature play a 
significant role in determining wear 
performance, making thermal management an 
essential factor in tribological applications. 
 
In manufacturing industries, selecting the right 
material and lubrication conditions can 
significantly extend the lifespan of machine 
components, reduce maintenance costs, and 
enhance operational efficiency. In automotive 
applications, where friction and wear directly 
impact fuel efficiency and part longevity, 
understanding these parameters helps in 
optimizing materials for brake pads, gears, and 
engine components. For biomedical applications, 
such as prosthetic joints and surgical tools, 
minimizing friction and wear is essential for 
reliability and long-term performance. The 
study's findings support the need for tailored 
tribological solutions, ensuring that materials 
perform optimally in their respective 
environments. A limitation of this study is that it 
evaluated only a fixed range of load and 
lubrication conditions, which may not fully 
reflect the variability encountered in real-world 
operational environments. Further research can 
include a broader range of polymer composites, 
dynamic operating conditions, and long-term 
wear simulations to strengthen the relevancy of 
the findings. 
 
 
5. CONCLUSION 
 
This study investigated the tribological 
performance of virgin and recycled PLA and PETG 
structures under dry and lubricated conditions. A 
pin-on-disk tribometer was used to measure key 
parameters such as wear rate, friction coefficients, 
energy dissipation, and temperature rise. The 

experimental dataset was augmented using 
Gaussian Mixture Model-based feature synthesis, 
expanding the dataset from 168 to 336 samples. 
This ensured better model generalization and 
improved statistical robustness. 
  
Regression models were developed to predict wear 
rate based on tribological parameters. Among the 
tested models, Gradient Boosting (R² = 0.698) 
outperformed Random Forest (R² = 0.660), 
demonstrating better predictive capability. Feature 
importance analysis highlighted energy dissipation 
as the dominant factor influencing wear rate. 
Classification models were also employed to 
distinguish between high and low-performing 
material-lubrication combinations. Logistic 
Regression achieved the highest classification 
accuracy (88%), effectively distinguishing optimal 
conditions for reduced wear. The findings 
emphasize the importance of material selection and 
lubrication strategy in minimizing wear. Recycled 
polymers exhibited higher wear rates compared to 
virgin counterparts, but lubrication significantly 
mitigated material loss. These insights are crucial 
for manufacturing, biomedical, and automotive 
applications, where polymer-based components 
undergo frictional interactions. The study 
demonstrates the integration of tribological 
experiments with machine learning to enhance 
predictive accuracy and decision-making. While 
data augmentation improved model performance, 
future research can explore real-world deployment 
of AI-driven wear prediction models and evaluate 
long-term durability of recycled polymers under 
varied operating conditions. 
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