Numerical and Experimental Studies on Performance Enhancement of Thrust Pad Bearing Employing Surface Texture: A Review

Dhanishta Sirohia,* and Shipra Aggarwala

aDept. Of Mechanical and Automation Engineering, Indira Gandhi Delhi Technical University for Women, Kashmere Gate, Delhi.

Keywords:
- Hydrodynamic lubrication
- Laser surface texturing
- Thrust pad bearing
- Cavitation
- Load carrying capacity
- Coefficient of friction

A B S T R A C T

This article aims to review the research findings in the field of surface texture on fixed pads, tilting pad thrust bearings and sliders. Numerical/computational and experimental explorations have been done by researchers to improve the performance behaviours by varying texture parameters such as the shape of texture, its depth, width, texture area density, location and extent. Articles are classified as experimental and numerical techniques which are further categorized depending on the inclusion of cavitation and thermal effects. There are indications that the presence of texture (comprising of pits, dimples, grooves and pockets) on the pad surface results in a reduction of the coefficient of friction and enhancement of load-carrying. The presence of a pocket is more beneficial in terms of increasing the minimum film thickness and decreasing the coefficient of friction than a pad with dimples or grooves. It is also observed that self-adaptive and bionic textures improve the performance behaviour of thrust pad bearings in comparison to conventional textures.

© 2023 Published by Faculty of Engineering

1. INTRODUCTION

Thrust pad bearings are used to withstand and guide the thrust or axial loads in hydraulic machinery, helical gearboxes and generators due to high load-carrying capacity (LCC), low friction and good damping tendency [1]. In the past, researchers have employed different techniques, such as surface texture and surface profiling on pads, and used different types of lubricant additives to improve the performance of thrust pad bearings. Surface texture is used broadly to enhance the performance behaviour of thrust pad bearing [2,3]. Texture act as numerous small hydrodynamic bearings that withstands load and reduces surface wear, behave as a small pool of oil and transfer lubricating oil to the rubbing surface and can corner the wear debris during the operation [4]. It has also been observed that different surface textures (dimples, pockets, pits, pores, and grooves) decrease friction coefficient,
enhance LCC and increase minimum film thickness. A schematic illustration of different micro-geometries comprising surface texture is shown in Fig. 1.

![Fig. 1. Different types of micro-geometries comprising texture (a) pits (b) dimples (c) grooves (d) pocket.]

These micro-geometries are mainly classified according to their dimensions such as depth, diameter, shape, etc. which are discussed in detail in subsequent sections. It has been observed that the texture parameters such as the number of textures, texture area density, depth of texture, aspect ratio of pad and convergence ratio affect the performance behaviour of bearings [5]. In the past, researchers working on textured bearing neglected cavitation and assumed pressure not to reach the sub-ambient zone. However, it is revealed that it is necessary to include thermal effects [6], and mass-conserving cavitation effects [7] to get a realistic solution. Recently, it has been perceived by researchers [8] that from nature, many bionic textures can be developed and can have many applications in engineering. Bionic textures designs are taken from biological organisms or adopted from nature. Reduction in drag, friction and wear and enhancement in LCC and minimum film thickness by the presence of bionic textures on the surface have also been reported [8]. Xie et al. [9] discussed the lubrication regime, thermal effects and tribological behaviours of water-lubricated bearings. A new type of texture is introduced by researchers [10,11] which can deform at micro or nano scale at increasing applied load in order to support that load successfully and maintain constant film thickness called self-adaptive dimples/ grooves. However, work done on self-adaptive [10,11] and bionic texture [8,9] on fixed pad thrust bearings is limited. A schematic representation of bionic and self-adaptive texture is shown in Fig. 2.

![Fig. 2. Schematic diagram of (a) bionic texture (b) self-adaptive texture.]

This article presents research findings in the field of texture on parallel sliders, parallel thrust bearings, inclined thrust pad bearings, tilted thrust pad bearings and tribometers. The articles are classified based on the research method employed and categorized into two types, namely,

- experimental studies and
- numerical/computational studies.

Articles involving numerical methods are further classified into four categories, namely,

- isothermal studies without considering cavitation effects,
- isothermal studies incorporating mass conserving algorithm,
- numerical studies incorporating thermal effects without considering cavitation, and
- numerical/computational studies considering thermal and cavitation effects.

This classification is illustrated in Fig. 3. Sixty per cent of the research has been done theoretically using numerical/computational methods. Out of which, around 16% of research is done by numerical studies incorporating thermal effects published during the last 25 years. The distribution of articles in different categories is shown in Fig. 4.
2. EXPERIMENTAL STUDIES

Research has been done by conducting experiments in the field of surface texture on thrust pad bearing [12-21], spiral groove thrust pad bearings [22-26] and different contact configurations in tribometers [3,11,27-41].

The performance of the bearing is measured in terms of LCC, coefficient of friction and minimum film thickness. It is shown that the performance of the bearing is improved in the presence of texture comprising of micro geometries such as dimples, pits, grooves and pockets. Texture parameters such as number, shape of texture, depth, width, texture area density, location and extent affect the performance behaviour of the bearing. These texture parameters are also influenced by the bearing's geometry (convergence ratio and aspect ratio) and operating conditions (speed and load).

2.1 Thrust pad bearing

A thrust pad bearing is used in machinery to support the axial load and decrease friction. The function of the thrust bearing is to control rotation between parts, prevent the shaft from moving in the axial direction, and transfer thrust and load applied on the shaft, as shown in Fig 5. Research is being carried out to improve the performance with regard to enhancing load and decreasing the friction of the thrust pad bearing. Experimentally research was done on parallel slider bearing [12-15], thrust pad bearing [16-20] and tilted thrust bearings [21] operating under applied load varying from 5-2548 N [12-21] and speed from 200-12000 rpm [12-21]. The friction coefficient and LCC are affected by texture area density [15,17-18], depth [13,17-19], width [19], texture circumferential extent [15,19], texture radial extent [15,19], texture position [14,17] and different shape of dimple such as circular [14,19] and rectangular [14,17]. These experimental studies' results revealed that friction coefficient and LCC are affected by high speed [12, 14-15, 19-20]. The centrifugal force increases gradually at high speed, which reduces bearing clearance so more fluid is squeezed away from the bearing land portion and increases the shear rate of the film, which may cause high friction torque [12].
It can be seen that dimples are located towards the entry side in the partial-textured pad and over the entire surface in the full-textured pad as shown in Fig. 6. A summary of articles involving the study of textured thrust-bearing by experimental research is given in Table 1.

From Table 1, it can be noticed that laser surface texturing is mostly used by researchers [12,14,17,19] to generate texture on pad surfaces. Pocketed surfaces result in lower friction compared to other textured surfaces [18]. A partially textured pad surface improves performance more than a full textured pad surface [12,17,19]. The position of the dimple at the inlet of the cell [17] improves performance as compared to the centre of the cell. Thermal deformation of the pad reduced LCC [17,20]. The performance of the bearing is improved when the texture radial extent is in the range of 0.8-0.9 [19] and the depth of dimples equals to minimum film thickness [13].

2.2 Spiral groove thrust bearing

Water-lubricated spiral groove bearings can withstand high loads for rotary machines, however, at higher speeds, friction loss increases [22]. Research shows that modified conventional spiral grooves can reduce power loss at high speed [22-23]. Researchers have used spiral groove bearing [22-26] to investigate the performance of bearings at an applied load of 45-250N [22-26] and operating speed of 20-2700 rpm [22-26]. Bearing performance parameters are affected by speed [22-25], load [24-26], aspect ratio [22], depth of grooves [22,24,26] and texture area density [26]. Fesanghary et al. [22] suggested that LCC depends on the texture aspect ratio. A summary of articles involving the study of spiral grooved thrust bearing by experimental research is given in Table 2.

Table 1. Articles involving the study of thrust-bearing texture by experimental research.

<table>
<thead>
<tr>
<th>Article</th>
<th>Input parameters</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikula [21] 1985</td>
<td>Leading edge groove shoe design. N: 4000 - 12000 rpm</td>
<td>Operate at 75% less oil flow rate. Temperature reduced by 20% at 12000 rpm</td>
</tr>
<tr>
<td>Ehsian et al. [12] 2004</td>
<td>SiC disks, circular dimples Unidirectional and bidirectional partial laser surface texturing N: 1500-3000 rpm, W_c: 0-500 N</td>
<td>μ: 0.01 for textured and 0.025 for untextured at 460 N and 1500 rpm</td>
</tr>
<tr>
<td>Glavatskh et al. [16] 2005</td>
<td>Thrust bearing test rig, grooves d: < 10 μm, N: 500; 3000 rpm P_c: 0.5-2.0 MPa</td>
<td>μ: reduced by 10%</td>
</tr>
<tr>
<td>Kawabata [13] 2012</td>
<td>Reciprocating friction sliding test, circular dimples, d: 4; 5; 5.5 μm, N: 176; 118; 106 d: 0.5-30 μm</td>
<td>d nearly equal to h_{rms} obtained: Maximum W, Minimum μ.</td>
</tr>
<tr>
<td>Henry et al. [17] 2015</td>
<td>Thrust bearing test rig, dimples W_c:1000-5000 N; d: 20 mm; ρ_c: 16%; 25% and 56% Two configurations: Inlet and centred in the cells</td>
<td>W increased; ρ_c of 56%, Low load range. 24K less temperature compared to untextured.</td>
</tr>
<tr>
<td>Miyanaga et al. [14] 2020</td>
<td>Rotating disk test; Dimples Shape: Circular, Transverse rectangular, Longitudinal rectangular N: 0-600 rpm</td>
<td>N: 600 rpm T_r is lowest in circular dimples</td>
</tr>
<tr>
<td>Chen et al. [19] 2021</td>
<td>Friction and wear testing machine, circular grooves, d: 0-40 μm, w: 100-2500 μm, N: 200-600 rpm, W_c: 15 N; 45 N, β: 0-1, a: 0-1</td>
<td>Partial texture improves performance more than full texture. Optimum a is 0.8–0.9, Optimum w, and d_r is 5 Experimental result agrees with theoretical at high rotational speed, low load conditions.</td>
</tr>
<tr>
<td>Bouyer et al. [20] 2021</td>
<td>Thrust bearing test rig, Circular pocket N: 0-8000 rpm, W_c: 1000 N and 1500 N d: 0.4 μm, D: 6 μm</td>
<td>Hydrostatic lift pockets: Reduced W, Thermal deformations T_r is 1.6 Nm at 1000 N and 3.0 Nm at 1500 N flat land with pocket</td>
</tr>
</tbody>
</table>
From Table 2, it can be seen that modified spiral grooves can improve the performance of bearings as compared to conventional grooved bearings [22-23]. The friction torque of the bearing increases proportionally with the applied load [24-25].

2.3 Tribometers

Different contact configurations such as cylindrical and spherical disk specimens [27-29], cylindrical on flat test geometry [30], pin on disk [31-35], reciprocating friction test rig [36], rectangular bar specimen [37], ring type specimen [3,38-41], ball on three flat [42] were used by the researchers to find the performance of the textured surface. Ball on three flat contact geometry used by Hsu et al. [42] concluded that the presence of large-sized dimples reduced friction in hydrodynamic lubrication. In contrast, small-sized dimples reduced friction in mixed lubrication. Different shapes of dimples such as droplets, parallelograms, mixtures (by combining two different shapes) and overlaps (by laying one shape over the other) were used. Mixture and overlap design provided friction coefficients less than 0.01 at 157 MPa and 0.055 at 470 MPa respectively [42]. In cylindrical and spherical disk, the cylinder is rotating with a speed in the range of 200-1200 rpm [27-29]. Load is applied on disk in the range of 98-3000 N [27-29] and the face of the disk is textured. A cylinder on flat test geometry is a modified pin on the disk tester. In this setup, the textured disk is rotating and load is applied to the cylinder [30]. The result shows that LCC is affected by the size of the dimple and the radius of the cylinder [30]. The reciprocating friction test rig consists of upper specimen textured with different shapes of grooves in face-to-face contact with the lower specimen under the applied load [36]. Block-on-ring test rig thrust specimens resemble annular rings [39].

The researchers have taken bionic texture from animals such as sharks [31], fish [8], frogs [35] and bush crickets [35]. The result of these experiment set up reveals that LCC is affected by texture area density [3,27-29, 35-36,40], speed [27,34,39,41], applied load [41], depth of texture [3,28-29,31,34,36], the shape of dimple such as rhombus [31], round [35], hexagonal [35], elliptical [36] and triangular [41]. Film thickness can be increased by 40% with a texture area density of 39% [40]. Panigrahi et al. [41] suggested that triangular shape dimples provide higher bearing clearance in comparison to circular, elliptical, and square shape dimples in a parallel slider due to additional hydrodynamic lift which causes less shear in the lubricant leading to lesser frictional torque. The lowest friction coefficient is 0.015 obtained on a surface having a texture area density of 8.6% with 0.3m/s speed under contact pressure of 5 MPa [32]. The friction coefficient is not affected by surface roughness in the hydrodynamic regime [39]. A summary of articles involving the study of texture in different contact configurations of tribometers employing experimental research is given in Table 3.
From Table 3, it can be concluded that pits [27-30] have been used less as compared to dimples [32-34, 36, 41]. Small dimples have increased LCC and reduced the coefficient of friction compared to large-sized dimples [30,41]. Laser surface texturing [27] and CNC machines [37] have been used to generate texture on the pad surface. Surface roughness did not affect the coefficient of friction [39].

3. NUMERICAL/COMPUTATIONAL STUDIES

More than sixty per cent of the research has been done using numerical methods. Researchers worked on different types of textures comprising dimples, pockets or grooves. Numerical simulations have been carried out to investigate the effects of texture parameters such as depth of texture, texture area density, convergence ratio of pad and shape of texture on LCC and friction coefficient. Numerical/computational studies can be classified into four categories, namely,

- isothermal studies without considering cavitation effects [10,43-56],
- isothermal studies incorporating mass conserving algorithm [3,11,37,57-69],
- numerical studies incorporating thermal effects without considering cavitation [70-75] and
- numerical studies considering thermal as well as cavitation effects. [2,8,76-80].

3.1 Isothermal studies without considering cavitation effects

Initial investigations were carried out to understand the effects of the presence of surface texture on the performance of the bearing assuming isothermal conditions. Finite difference method (FDM) [10, 43-50] and Finite volume method (FVM) [51-56] were used to solve the numerical model. 2-D Reynolds equation for an incompressible Newtonian fluid in steady-state laminar flow used by the researchers to find bearing performance parameters. Firstly, the Reynolds equation is discretized by FDM and numerically solved for pressure values at different nodes by Gauss Seidal iterative method. In FVM, bearing performance is calculated by computational fluid dynamics simulations which are based on the solution of the Navier-Stokes equation. Research revealed that the performance behaviours of bearing such as LCC are increased by 20% [44] and the coefficient of friction is reduced by more than 44% [50,55]. These performance parameters are affected by types of micro-geometries present in the texture such as dimples [43-44,46-48,53-54,56], grooves [45,52], pockets [51], self-adaptive grooves [10], bionic dimples [49] and parameters of texture such as aspect ratio [43], texture extent along the length of the pad [43,45], depth [43,45-47,49,54,56], width [48,52,54], texture area density [43-44], texture location [45,47,51,53], number of dimples/grooves [45-47], the shape of texture such as elliptical [44], square [45], and cylindrical [52], splined [52] and convergence ratio of pad [46,48,51,53,56], Zeng et al. [50] obtained the maximum friction reduction of 44% in comparison with the smooth surface for a circular concave texture of depth 20 µm.

The self-adaptive texture surface used by Duvvuru et al. [10] can deform itself into micro or nano grooves over the surface when the applied load is increased. Thin foil was used as a self-adaptive surface. Deformation of the surface depends on material properties, dimensions and lubricant pressure. Beam theory was employed to find the foil deflection. A combination of dimples and grooves suggested by Aggarwal and Pandey [45] revealed that a square cross-sectional shape gives the best results among circular, square, trapezoidal, and triangular grooves. The presence of five square cross-sectional grooves of 60 µm depth placed in the inlet zone yields the best results compared to placing at some other locations on the pad's surface. Placing grooves on the pad surface yields greater improvement in the performance parameters compared to dimples. A summary of articles involving isothermal studies of textures without considering cavitation effects is given in Table 4.
<table>
<thead>
<tr>
<th>Article</th>
<th>Contact configurations</th>
<th>Input parameters</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsu et al. [42] 2016</td>
<td>Ball on three flat</td>
<td>Dimple</td>
<td>Self-adaptive dimple: (U): 0.19-1.34 m/s, (p_0): 157-470 MPa
Pattern: Droplet, Parallelogram, Mixture
(Combination of two shapes), Overlap (Laying one shape over other)
(\mu): Less than 0.01 at 157 MPa and 0.055 at 470 MPa.</td>
</tr>
</tbody>
</table>
Table 4. Articles involving isothermal studies without considering cavitation effects.

<table>
<thead>
<tr>
<th>Article</th>
<th>Input parameters</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brizmer et al. [43] 2003</td>
<td>FDM, Circular dimples, ρs: 0-80%, Slider L/B: 0.1-infinite, Dimple extent in sliding direction: 0-1, d: 50-200</td>
<td>Full texture is not useful to develop W Max. W: Dimple extent along sliding direction is 0.6, Slider L/B ≥ 0.5</td>
</tr>
<tr>
<td>Yu et al. [44] 2009</td>
<td>FDM, dimple, d: 8-9 µm, ρs: 7%, U: 0.1-0.2 m/s, Shape of dimple: Ellipse, Circular, Triangle</td>
<td>26.3% W increased by ellipse over circular dimple at 0.2m/s</td>
</tr>
<tr>
<td>Aggarwal and Pandey [45] 2012</td>
<td>FDM, grooves, d: 10-100 µm, Nc: 0-6, Location of grooves: Inlet, Mid, Outlet, overall Shape: Circular, Square, Trapezoidal</td>
<td>Enhancing W and reduced μ by: Nc/5, d: 60 µm square-shaped grooves placed at the inlet, Grooves improve performance more than dimples</td>
</tr>
<tr>
<td>Duvvuru et al. [10] 2008</td>
<td>FDM, self-adaptive grooves Euler Bernoulli beam theory hmin: 1; 3; 4; 5; 7; 10 µm, Foil thickness: 10; 15; 20 µm</td>
<td>W decreases with an increase in hmin, Film stiffness and W of self-adaptive surfaces can be greater than conventional surfaces</td>
</tr>
<tr>
<td>Yagi et al. [46] 2017</td>
<td>FDM, circular dimples, Balancing wedge action to multiple dimples K: 0-1, d: 0.1-10 µm, Nc: 1-100, wc: 0.2-1</td>
<td>Dimples at the inlet of the pad provides: Maximum W</td>
</tr>
<tr>
<td>Kouider et al. [47] 2018</td>
<td>FDM, dimple, grooves N: 500-3000, d: 20; 30; 40 Four types of texture: Circumferential groove, Radial groove, Rectangular dimple, Dimple in the mid of the pad, Position of dimple: Inlet, Middle, Outlet</td>
<td>Radial grooves placed at inlet yields: Maximum W, Minimum Tj, Dimple placed close to pivot position obtained maximum W</td>
</tr>
<tr>
<td>Zhang et al. [48] 2019</td>
<td>FDM, circular dimples D: 400 µm, d: 10 µm, K: 0.2; 0.4; 0.8; 1.2, Nc: 0-40, Width of pad: 5; 7; 9; 11 mm</td>
<td>Dimples arranged in Triangular/trapezoidal pattern at the inlet of the bearing pad provides: High W, Low μ</td>
</tr>
<tr>
<td>Yu et al. [49] 2020</td>
<td>FDM, bionic dimples Grids of dragonfly wings Groove d: 35 µm, Airflow angle: 0-90° N: 45,000-90,000 rpm</td>
<td>Airflow angle of 24°: highest W for a circular surface W is 4.69 N at 90,000 rpm which is 46.11% more than conventional grooves</td>
</tr>
<tr>
<td>Zeng et al. [50] 2021</td>
<td>FDM, dimples Circular concave d: 5-30µm Spherical convex height: 3; 5; 7; 15; 20 µm, Spherical convex bottom: 48; 72; 96; 120 µm</td>
<td>44% µ reduced in comparison with the smooth surface at U is 0.8 m/s Circular concave d: 20 µm</td>
</tr>
<tr>
<td>Gosman et al. [51] 2005</td>
<td>FVM, square pocket, d: 0-40 µm, K: 0.001; 0.01; 0.1; 1</td>
<td>Minimum μ 0.00019 when K is 1</td>
</tr>
<tr>
<td>Glavatskii et al. [52] 2005</td>
<td>FVM, grooves Re: 40; 80; 120; 160 Geometry: Cylindrical, Splined w: 0.15-0.50, d: 0.25-1.25, displacement to width ratio: 0.3; 0.1; 0.3</td>
<td>Maximum W: d: 0.5-0.75 for all geometry and width F reduced: High d, High w: Best performance: cylindrical geometry</td>
</tr>
<tr>
<td>Capillard et al. [53] 2008</td>
<td>FVM, rectangular dimples K: 0-2.0, Dimple d: 0.1, 0.03; 0.75</td>
<td>Maximum W depends on: K, d, inlet position of dimple</td>
</tr>
<tr>
<td>Han et al. [54] 2010</td>
<td>FVM, spherical cap micro dimples d: 0.5-2.20, w: 0-2-0.8, Re: 10; 80; 160</td>
<td>W increases, Increase Re, Increase w, Maximum W, minimum μ: d: 0.80–2.00</td>
</tr>
<tr>
<td>Charitopoulos et al. [56] 2013</td>
<td>FVM, grooves Wavy parallel slider, Wavy converging B/L: 0.5-infinite, K: 0.75-1.31</td>
<td>Improvement in W 30% wavy parallel slider 15% wavy converging</td>
</tr>
<tr>
<td>Sun et al. [55] 2017</td>
<td>FVM, sawtooth riblet dimples hmin: 0.3; 0.5; 3 µm, d: 10; 20; 50 µm, U: 0.01; 0.02; 0.03 m/s</td>
<td>Sawtooth riblet can provide: Maximum reduction in μ 93.83% at 0.03 m/s</td>
</tr>
</tbody>
</table>

From Table 4, it can be noticed that texture placed at the inlet [45-46,48,53] is more beneficial than other locations such as the exit [46] and close to the pivot [47] of the pad. Different shapes of dimples and grooves such as circular [43-46], square [45,51], elliptical [44] and cylindrical [52] have been investigated which improves the performance behaviours of bearing. Maximum pressure is generated when the convergence ratio is less than 1 [48] or equal to 1 [51,53]. The performance of the bearing is improved when the depth ratio is in the range of 0.75-0.80 [52,54]. Bionic texture [49] and self-adaptive texture [10] yielded high LCC than conventional grooves.
Table 5. Articles involving isothermal studies incorporating mass conserving algorithm.

<table>
<thead>
<tr>
<th>Article</th>
<th>Input parameters</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fesanghary and Khonsari [11] 2010</td>
<td>JFO model, self-adaptive grooves Classic plate equation Foil thickness: 7-15 µm Width/length: 1-100 λ: 0.3-0.75</td>
<td>Self-adaptive grooves withstand more load than conventional grooves. 3% W increased by Width/length large ratios. Width/ l, less than 10 should be used by the mass conserving model.</td>
</tr>
<tr>
<td>Zhang [3] 2012</td>
<td>JFO model grooves N_e: 24; 24; 96 d: 4.6; 10.2; 5.2 µm Cavitation pressure: 10-90 kPa</td>
<td>JFO model under applied load 30 kPa obtained similar results with the experiment. Maximum values of the μ obtained by the Reynolds model were 71% of experimental values.</td>
</tr>
<tr>
<td>Sharma [59] 2014</td>
<td>JFO model, dimples Power law index: 0.9; 1; 1.1 The shape of dimples: Conical, Spherical</td>
<td>The hydrodynamic effect can improve by lubricants of the micro dimples.</td>
</tr>
<tr>
<td>Yagi et al. [60] 2015</td>
<td>JFO model, circular dimples d: 0.1-6, Diameter ratio: 0.1-0.9</td>
<td>W depends on D and d.</td>
</tr>
<tr>
<td>Feng and Peng [61] 2018</td>
<td>JFO model, grooves N_e: 60; 90; 120 d: 0-30 µm Groove angle: 4°, 2.7°, 2°; w: 0.1-0.9</td>
<td>Maximum W: 403 N; F: 29.26 N; w: 0.667, N_e: 60, Groove angle 4°; d: 21 µm</td>
</tr>
<tr>
<td>Kumar et al. [62] 2019</td>
<td>JFO model, grooves d: 0.0.06 mm, Angular width 0-10° Length of groove: 0-40 mm The shape of the groove: Circular, Triangular</td>
<td>Full section circular groove provides: 138.94% increment in W, 52.58% reduction of Frictional power Maximum W generated: Groove angular width 7.8°; d: 0.04 mm</td>
</tr>
<tr>
<td>Atwal and Pandey [65] 2020</td>
<td>JFO model, pocket Bearing pad: Plain, Pocket New textured</td>
<td>h_{min} increased: 19-48% with textured pad, 17-43% with pocketed pad μ reduced: 7-24% with texture pad, 6-22% with pocketed pad At the mid-section of the pad, $β$ of 0.7 gives the best performance.</td>
</tr>
<tr>
<td>Kumar et al. [64] 2020</td>
<td>JFO model, elliptical dimples Configurations of elliptical shape dimple: semi-minor and major axis in the x-direction, d: 0-1.6 Roughness parameter: 1/9-9</td>
<td>Maximum W: d: 0.8 Elliptical dimple semi-major axis in the x-direction. Elliptical dimples reduce F by 48.3%.</td>
</tr>
<tr>
<td>Atwal et al. [63] 2021</td>
<td>JFO model, pocket New pocket, Rectangular pocket, Plain pad</td>
<td>Enhance h_{min} 96-270% with new conceived pocketed pad and 95-232% with rectangular pocketed pad F reduced: 9-14% with new conceived pocketed and 8-12% with rectangular pocketed.</td>
</tr>
<tr>
<td>Fowell et al. [66] 2007</td>
<td>First-order Reynolds equation, pocket d: 5 µm K: 0-1</td>
<td>Pocket reduces friction: In the same proportion of surface area covered by it. Increasing load support By increasing h_{min}.</td>
</tr>
<tr>
<td>Fowell et al. [67] 2012</td>
<td>Second-order Reynolds equation, pocket N_e: 2-30, $β$: 0-1, $μ$: 0-100%</td>
<td>The textured area must begin in the first half of the bearing, d affected by h_{min}.</td>
</tr>
<tr>
<td>F.M. Meng [68] 2013</td>
<td>Second-order Reynolds equation, circular dimples d: 0-3 µm, $λ$: 0.2-2</td>
<td>d increases: Increases F Increases W</td>
</tr>
<tr>
<td>Almada et al. [69] 2019</td>
<td>Swart Gelber Belamri (CFD), rectangular dimples, w: 0.5mm</td>
<td>Cavitation cannot be neglected to obtain accurate results for the bearing with texture.</td>
</tr>
</tbody>
</table>

3.2 Isothermal studies incorporating mass conserving algorithm

In the past, researchers working on textured bearing neglected cavitation and assumed pressure not to reach the sub-ambient zone. To make the solution more realistic, cavitation can’t be neglected. When a non-textured surface (stator) moves with respect to a textured (runner) surface, it results in the formation of divergent and convergent zones in a thrust pad bearing. Low pressure exists in the divergent zone, which results in the suction of the lubricant from the vicinity. This leads to an increase in the flow rate of lubricant which enhances the magnitude of
hydrodynamic pressure [66,67]. Due to local pressure reduction below ambient pressure in the divergent zone of dimple or groove, cavitation of lubricant occurs which affects the performance of the thrust pad bearing. The Jakobson–Floberg-Olsson (JFO) cavitation model [3,11,37,57-65] is a widely used model by researchers. However, some researchers have used the first-order Reynolds equation [66-68] and CFD (using the Zwart Gelber Belamri model) [69] to incorporate cavitation.

Researchers revealed that film thickness is increased up to 270% [63,65] and friction coefficient reduced up to 24% [63-65] in the presence of textured surfaces, such as dimples [57-60,64,68], grooves [3,61-62], pockets [63,65-67] and self-adaptive grooves [11]. Various texture parameters considered are depth [3,57-58,60-66,68], width [61], and the shape of texture such as trapezoidal [57], square [58], conical [59], spherical [59], circular [62], elliptical [64] texture area density [57], number of dimples/grooves [3,61], the position of texture [57], texture extent [57-58,63,65,67], convergence ratio of pad [57,59,66-67]. Fesanghary and Khonsari [11] introduced a bearing having a self-adaptive surface that has small grooves which can deform when the applied load is increased and provide a flexible surface texture. Reynolds equation is used for the computation of pressure and the classic plate equation is used for determining deformation. Zhang et al. [3] explored two cavitation models, the Reynolds model and the JFO model, and concluded that results obtained with the JFO model provide cavitation investigation nearly similar to the experimental results. A summary of the articles involving isothermal studies incorporating mass-conserving algorithms on textured pads is given in Table 5.

It can be concluded from Table 5 that cavitation cannot be neglected to obtain the accurate result of the performance of a textured bearing [3, 69]. The JFO model can express cavitation characteristics more closely than the Reynolds model [3]. The depth of the micro-geometries affects minimum film thickness [67] and LCC is improved when the depth of grooves is in the range of 21-40 µm [61,62] and the dimple depth ratio is 0.8 [64]. Pockets and textured pockets can improve the performance of bearing; minimum film thickness in the range of 48-270% [63,65] and coefficient of friction in the range of 14-24% [63,65]. Self-adaptive grooves withstand more load as compared to conventional grooves [11].

3.3 Numerical studies incorporating thermal effects without considering cavitation

Today, bearing speeds and loads have increased to a point where thermal effects need to be taken into consideration. The heat created in the lubricant film has a severe effect on the performance behaviour of bearings, therefore, the thermal effects need to be considered. The performance behaviour of bearing can be obtained using CFD simulations [70-75] based on the solution of Navier Stokes equation along with the energy equation for steady-state incompressible Newtonian fluid in laminar flow. Bearing performance parameters are affected by types of texture such as dimples [70-71], grooves [73], and pockets [72-74] and texture parameters such as depth [71-73], extent [71,73,75], the shape of texture such as grooves[62] and elliptical [75] circular. Fouflias et al. [72] investigated the performance behaviour of four types of thrust pad bearing namely, open pocket bearing, closed pocket bearing, tapered land bearing and partially textured employing rectangular dimples using computational fluid dynamics simulations. Results revealed that the performance of the bearing is affected by speed, film thickness, and texture depth. The best performance of bearing is attained in the presence of an open pocket. Different types of pockets are shown in Fig. 7.

Fig. 7. Schematic illustration of different types of pockets (a) Micro-pockets (b) open pockets (c) closed-pocket. Different shapes of open-pocket (d) rectangular (e) Trapezoidal (f) Triangular.
It can be seen in Fig. 7 that a pocket can be a micro-pocket (where innumerable pockets are located on the pad) as shown in Fig. 7(a) and a macro-pocket or a large-sized pocket as shown in Fig. 7(b)-7(f). A pocket can be closed pocket (enclosed from all sides) or open (enclosed from 3 sides and open from the entry side). Different shapes of pockets are illustrated in Fig. 7(d)-7(f). A summary of articles involving numerical studies incorporating the thermal effects of textured pads without considering cavitation is provided in Table 6.

It can be observed from Table 6 that inlet texture increases LCC when thermal effects are considered [70]. It is revealed by researchers that the performance of bearing improved when the circumferential extent is 0.66 [71] and the radial extent in the range of 0.75-0.80 [71,74-75]. Open pockets improve load-carrying to the maximum extent [72]. Pocketed bearings improve the bearing performance more than grooved bearings [73]. Texture can reduce the pad surface temperature by 5-7°C [73,75]. The best results are obtained for the cases when the dimple depth is equal to the minimum film thickness [71] whereas the depth of the pocket is 4-6 times [74] the minimum film thickness.

3.4 Numerical/computational studies considering thermal as well as cavitation effects

Reynolds equation is used to compute pressure at different nodes in the domain in the lubricating film incorporating the cavitation model along with the energy equation. JFO cavitation model [2,77-80] is widely used in thermo-hydrodynamic lubrication. Performance parameters such as LCC and friction are affected by types of texture, namely, grooves [2], pockets [8,79-80] and texture parameters such as depth [2,76,78-79], texture area density [78], texture extent [78-79], width ratio [2] position [2], the shape of texture such as the square shape of grooves [2], square shape of pocket [77], trapezoidal shape of pockets [79]. The best geometry suggested by Aggarwal and Pandey [2] of the grooved textured pad is four grooves having a square cross-section of 30 µm depth.

Table 6. Articles involving numerical studies incorporating thermal effects without considering cavitation.

<table>
<thead>
<tr>
<th>Article</th>
<th>Input parameters</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cupillard et al. [70] 2009</td>
<td>FVM, rectangular dimples, (K: 0.5, \ U: 0-40 \text{ m/s}, d: 0.75)</td>
<td>Dimples affected (W): Speed and inlet flow rate were varied</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The convergence ratio is lower than 1</td>
</tr>
<tr>
<td>Papadopoulos et al. [71] 2013</td>
<td>FVM, rectangular dimples, (h_{\text{min}}: 20-100 \mu\text{m}, \text{Dimple radial width: 9-19 mm}, d: 10-40 \mu\text{m}, \rho: 30-70%, \beta: 0.22-0.77)</td>
<td>(W) increases proportionally with (N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The quadratic inverse of (h_{\text{min}}) (W) is maximum (d/h_{\text{min}})</td>
</tr>
<tr>
<td>Foulias et al. [72] 2014</td>
<td>FVM, pocket, dimples, Open pocket, Closed pocket, Rectangular dimple texture, Tapered land bearing, (h_{\text{min}}: 10-80 \mu\text{m}, Re: 1-89, N: 2000-10000 \text{ rpm})</td>
<td>(W) increases: The quadratic inverse of (h_{\text{min}}) Open-pocketed bearing having the highest value of (W)</td>
</tr>
<tr>
<td>Zouzoulas et al. [73] 2017</td>
<td>FVM, pocket, grooves, dimples, (N: 1500; 3000 \text{ rpm}) (P_{c}: 0.5-2.5 \text{ MPa})</td>
<td>Pocket and Circumferentially grooves: Improved (h_{\text{min}}) by 10–24% and 4–20% respectively Reduced maximum temperature by 7°C and 5.5°C respectively.</td>
</tr>
<tr>
<td>Charitopoulos et al. [74] 2018</td>
<td>FVM, pocket, Two configurations were used: Taper land bearing, Curved pocket bearing (N: 50000-250000 \text{ rpm})</td>
<td>Improving the performance of bearing: (\beta) should be 0.8 (d: 4-6 \text{ times } h_{\text{min}}) 40% (h_{\text{min}}) is increased and 12% power loss is decreased.</td>
</tr>
<tr>
<td>Fu and Untaroiu [75] 2018</td>
<td>FVM, dimples, The shape of the dimple: Rectangular, Elliptical: (a: 0.5-0.9) (\beta: 0.3-0.7)</td>
<td>Elliptical dimples provide: Higher (W), The fluid film temperature is small The optimum (\beta) is 0.8 The optimum (a) of elliptical dimples is 30% larger than rectangular dimples. Maximum temperature reduces: 1.1% and 1.3% by rectangular and elliptical dimples respectively.</td>
</tr>
</tbody>
</table>
Table 7. Articles involving numerical simulations considering thermal as well as cavitation effect.

<table>
<thead>
<tr>
<th>Article</th>
<th>Input parameters</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checo et al. [76] 2014</td>
<td>JFO model, dimples d: 0-10 µm</td>
<td>Best results obtained: texture width comparable to L. d = 2lhₘₐₓ.</td>
</tr>
</tbody>
</table>
| Aggarwal and Pandey [2] 2016 | JFO model, grooves Different shapes of grooves (circular, trapezoidal, triangular, square) Different locations (entry, middle, exit, full surface) | Grooves at entry side, square shape grooves: increased W up to 97%, reduced µ up to 51%
Best geometry of textured pad: Nₚ: 4, the shape of the groove is square, d: 30 µm, w: 6.75mm |
| Aggarwal and Pandey [77] 2018 | JFO model, pocket, dimples Different Pocket cross-sections (circular, square, trapezoidal, triangular) Different dimples (cylindrical, ellipsoidal, hemispherical) At different locations (entry, exit middle and full surface) | Square-shaped pocket toward the entry side contributes: increasing W, reducing µ. |
| Gropper [78] 2018 | JFO model, rectangular dimples d: 9-47 µm a: 0.39-0.74, β: 0.56-0.91 N: 1000; 2000 and 3000 rpm W: 0.5-2.0 MPa | At 0.75 β, hₘₐₓ is maximum
At 0.5 β, µ is minimum
At 0.87 β, lowest maximum temperature.
At 0.67 β, hₘₐₓ and µ are high. |
| Atwal and Pandey [8] 2019 | JFO model, pocket, bionic grooves Fish (Musa acuminate, Labeo Rohita, Thunnini, and Sailfish) Pocket, Fish scale texture, Pocketed fish textured | hₘₐₓ increases by a combination of pocket and fish bionic texture 10–45%, pocket 10–42%; fish bionic texture 6–35% µ is reduced by 5-18% by Pocketed-fish textured among all the textured pads considered. |
| Atwal and Pandey [79] 2021 | JFO model, pocket Tilted Pad Plain, rectangular pocket, trapezoidal rectangular pocket, Trapezoidal textured | hₘₐₓ enhanced: 16–48% by combination of trapezoidal pocket and textured pad, 18–60% by trapezoidal pocketed pad
Power loss reduced:
By 4–10% with the combination of trapezoidal pocket and textured
5–13% with trapezoidal pocket
Temperature reduced:
3–10% by the combination of trapezoidal pocket and textured
8–13% by trapezoidal pocket |
| Chalkiopoulou et al. [80] 2021 | Rayleigh Plesset (CFD), grooves length: 3 mm, d: 4 mm | Performance of bearing is affected by thermal deformations:
W reduced by 13%
µ is increases by 10%. |

Chesco et al. [76] indicated that the best results are obtained when the dimple depth is twice the clearance between the pad and the runner. A summary of the study of texture in articles involving numerical simulations considering thermal and cavitation effects is given below in Table 7. It can be concluded from Table 7 that the bearing performance is affected by thermal deformation [80]. The performance of the bearing is improved when the depth of the dimple is twice the film thickness [76] and the depth of the groove is 30 µm [2]. Square-shaped grooves [2] and pockets [77] at the inlet increase LCC and reduced friction coefficient and temperature. More lubricant enters at the entry of groove compared at the exit, which results in high pressure development in order to satisfy continuity law. Due to the temperature reduction and pressure generation, LCC increases [2,77]. The circumferential extent should be 0.66 to improve the performance of the bearing. Textured pockets increased minimum film thickness in the range of 10-60% [8,79] and reduced friction coefficient by 5-18% [8,79]. New techniques Fourier amplitude sensitivity test method [81] and machine learning [82] were introduced in recent research on surface texture. Geng et al. [81] introduced the Fourier amplitude sensitivity test method to calculate first-order sensitivity indices of parameters of texture. Zhu et al. [82] generated wavy and chevron dimples through machine learning reduced friction coefficient by 27-49% and increased load carrying capacity by 126-144% compared to design by conventional methods.
4. RESULTS AND DISCUSSION

Based on the investigations carried out by various researchers on the textured pad bearings, it is revealed that texture comprising micro-geometries such as dimples, grooves, pits or pockets improves the performance behaviours of the bearings. However, it is also noticed that the coefficient of friction and LCC depends on the texture parameters such as shape and depth of micro-geometries, texture extent, and textured area density. In this section, a comparison of the performance behaviours of pad thrust bearing incorporating different types of textures is discussed. Texture parameters for different micro-geometries are shown in Table 8.

<table>
<thead>
<tr>
<th>Type of texture</th>
<th>Depth</th>
<th>Shape</th>
<th>Texture Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pits [27-30]</td>
<td>2-16.6 µm</td>
<td>Circular</td>
<td>D= 50-650 µm, ρc=2.8-22.5</td>
</tr>
<tr>
<td>Dimples [12-15,17,32-36,38,41-44,46,48,50,53-55,59-60,64,69-73,75-78]</td>
<td>3-200 µm</td>
<td>Circle/spherical, Rectangular/square, triangle/conical, trapezoidal, Elliptical</td>
<td>D= up to 800 µm, d=0.1-1.0 µm, w=0-1, ρc=0.1-0.8, α=0-1, β=0-1</td>
</tr>
<tr>
<td>Grooves [2,3,11,16,19,22-26,39,45,47,52,61-62,73,80]</td>
<td>up to 100µm</td>
<td>Circular, Triangular, Trapezoidal, Square,</td>
<td>l= up to 40mm, d=0.25-1.25, w=0.15-0.50, ρc=0.9-0.25, Np= Up to 12, w= 100-250 µm</td>
</tr>
<tr>
<td>Pockets [8,18,20,37,40,51,63,65-67,72-74,77,79]</td>
<td>0.01-0.4 mm</td>
<td>Rectangular, Trapezoidal</td>
<td>D= 0.6-0.14mm, β=0-1, ρc=0-1</td>
</tr>
</tbody>
</table>

Researchers have used pits, grooves, pockets and dimples for the generation of texture on the pad surface. A comparison of the depth of pits, dimples, grooves and pockets is shown in Fig. 8. Pits are geometrical shapes which have an effective depth of 3.2 µm [27-30]. Dimples have an effective depth of 10 µm [16,32,44,48,76] which is three times that of pits. Grooves and pockets have an effective depth of 35 µm [2,25,49] and 40 µm [20,51] respectively. Local film thickness is increased in the presence of dimples/grooves. Higher local film thickness provides more LCC and also reduces metal-to-metal contact [47].

The percentage reduction of friction torque using different shapes of dimples (cylindrical, elliptical, triangular and circular) in comparison to rectangular-shaped dimples is shown in Fig. 10. Researchers revealed that the cylindrical, elliptical, triangular and circular shapes of the dimple reduced friction torque respectively by more than 35% [77], 20% [44,75,77], 12% [41,44] and 6.25% [14,41,44,77] than rectangular dimples as shown in Fig. 9.

Effective parameters of dimples are also suggested by the researchers. The dimple depth ratio is the ratio of the depth of the dimple to the minimum film thickness. It is recommended by the researchers that the effective depth ratio is 0.8[52,54,64]. Texture area density is defined as the ratio of the dimple textured area to the cell area (containing the dimple). To improve the performance of the bearing 8% [32,44] texture
area density is suggested. A circumferential extent of 0.6 [18,43,78] and a radial extent of 0.8 [70,75] should be used for best performance. All these dimple parameters are shown in Fig. 10.

It is noticed that pockets improve LCC by more than 30% [72,77] and reduced friction torque by more than 19% [18,72,77] compared to dimples. Grooves improve minimum film thickness by more than 7% [73] and reduced friction torque by more than 6% [73,45] in comparison to dimples. Therefore, it can be concluded that pockets and grooves improve the performance of the bearing more than dimples. Moreover, pockets out-performs grooves as it results in a higher reduction in friction torque in comparison to grooves.

5. CONCLUSION

Surface texture is employed to improve the performance of thrust pad bearings. Experimental and numerical studies reveal that partial texture towards the entry side improves the load capacity, and reduces friction coefficient and temperature rise of the pad. However, full surface texture deteriorates the performance. Also, the benefits of textured pads are realized at a lower convergence ratio (less than 1).

Performance behaviours of the pad thrust bearing also depend on texture parameters such as location, depth, width, shape and texture area density. Dimples located towards the inlet yield more favourable results in comparison to dimples located at other locations. The performance of the bearing is improved when the radial extent of the texture is in the range of 0.75-0.9 and the circumferential texture extent is 0.66. Different shapes of dimples are explored in order to study their effect on the performance of thrust pad bearing such as triangular, elliptical, rectangular, circular, square, trapezoidal, spherical and cylindrical. The cylindrical shape of the dimple yielded a maximum reduction in friction torque. Higher load-carrying is achieved when the depth of grooves is in the range of 21-40 μm and the dimple depth ratio is in the range of 0.75-0.8.

The presence of a pocket is more beneficial in terms of increasing minimum film thickness and reducing friction than a pad with dimples or grooves. Moreover, the grooved pad yields higher load-carrying and lower friction coefficient than pads with dimples. Self-adaptive and bionic textures improve the performance behaviour of thrust pad bearings as compared to conventional textures.
However, limited explorations are carried out on bionic textured and self-adaptive textured pads. As a part of future work, investigations of bionic texture and self-adaptive texture can be explored in order to improve performance behaviours. It is noticed that the texture parameters depend on operating conditions and pad geometry, therefore, further investigations and optimization can be carried out in this area. Most of the work related to surface texture is based on numerical/computational studies. Very few experimental studies on the thrust pad bearing test rig are conducted, therefore, computational investigations can be supported by experimental explorations.

Nomenclature

- A_c: Texture cell area (µm2)
- $A_{textured}$: Texture area (µm2)
- B: Width of the slider (µm)
- D: Diameter of texture (µm)
- d: Depth of texture (µm)
- F: Friction force (N)
- d_r: Depth ratio (d/h_{min})
- h_1: Film thickness at entry edge (µm)
- h_{min}: Minimum film thickness (µm)
- K: Convergence ratio (h_1/h_{min})
- L: Length of slider (µm)
- l: Length of pad (µm)
- L_r: Length ratio (l/L)
- N_d: Number of dimples
- N_g: Number of grooves
- N_p: Number of pockets
- N_r: Rotational speed (rpm)
- P_c: Contact pressure (Pa)
- P_r: Reynolds number
- S: Spacing between two dimples (µm)
- U: Sliding velocity of runner (m/sec)
- W: Load carrying capacity (N)
- W_e: Applied load (N)
- W_r: Width of dimple (µm)
- w_r: Width ratio (w/s)
- $ρ_e$: Texture area density ($A/\text{A}_{textured} \times 100$) (%)
- A: Texture area in radial direction
- B: Texture area in circumferential direction
- $μ$: Coefficient of friction
- T_f: Friction torque (Nm)

REFERENCES

The decoded text from the image is not available due to the image upload issue.

